Lightweight and Hydrophobic Three-Dimensional Wood-Derived Anisotropic Magnetic Porous Carbon for Highly Efficient Electromagnetic Interference Shielding

被引:127
作者
Zheng, Yun [1 ]
Song, Yujuan [1 ]
Gao, Tong [1 ]
Yan, Siyu [1 ]
Hu, Haihua [1 ]
Cao, Feng [1 ]
Duan, Yuping [2 ]
Zhang, Xuefeng [1 ,3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110819, Peoples R China
[2] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116023, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Inst Adv Magnet Mat, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
electromagnetic interference shielding; wood-derived carbon; porous architecture; hydrophobic; lightweight; MICROWAVE-ABSORPTION PROPERTIES; COMPOSITE FOAMS; PERFORMANCE; AEROGEL; STIFF; OXIDE; NANOPARTICLES; FABRICATION; ULTRALIGHT; NANOTUBES;
D O I
10.1021/acsami.0c11530
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Constructing multifunctional characteristics toward advanced electromagnetic interference shielding materials in harsh environments has become a development trend. Herein, the wood-derived magnetic porous carbon composites with a highly ordered anisotropic porous architecture were successfully fabricated through a pyrolysis procedure. The three-dimensional porous skeleton inherited from the wood stock serves as an electrically conductive network and incorporates magnetic Ni nanoparticles homogeneously and firmly embedded within the carbon matrix that can further improve the electromagnetic attenuation capacity. The optimized Ni/porous carbon (PC) composite exhibits an exceptional electromagnetic interference (EMI) shielding effectiveness of 50.8 dB at the whole X band (8.2-12.4 GHz) with a low thickness (2 mm) and an ultralow density (0.288 g/cm(3)) and simultaneously possesses an extraordinary compressive strength (11.7 MPa) and a hydrophobic water contact angle (152.1 degrees). Our study provides an alternative strategy to utilize green wood-based materials to design multifunctional EMI shielding composites.
引用
收藏
页码:40802 / 40814
页数:13
相关论文
共 70 条
[1]   Three-dimensional and highly ordered porous carbon-MnO2 composite foam for excellent electromagnetic interference shielding efficiency [J].
Agarwal, Pinki Rani ;
Kumar, Rajeev ;
Kumari, Saroj ;
Dhakate, Sanjay R. .
RSC ADVANCES, 2016, 6 (103) :100713-100722
[2]   Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites [J].
Arjmand, Mohammad ;
Chizari, Kambiz ;
Krause, Beate ;
Poetschke, Petra ;
Sundararaj, Uttandaraman .
CARBON, 2016, 98 :358-372
[3]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[4]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[7]   Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding [J].
Gao, Jiefeng ;
Luo, Junchen ;
Wang, Ling ;
Huang, Xuewu ;
Wang, Hao ;
Song, Xin ;
Hu, Mingjun ;
Tang, Long-Cheng ;
Xue, Huaiguo .
CHEMICAL ENGINEERING JOURNAL, 2019, 364 :493-502
[8]   Water-repellent legs of water striders [J].
Gao, XF ;
Jiang, L .
NATURE, 2004, 432 (7013) :36-36
[9]   Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band [J].
Gupta, Shivam ;
Tai, Nyan-Hwa .
CARBON, 2019, 152 :159-187
[10]   Ultralight and high-elastic carbon foam with hollow framework for dynamically tunable electromagnetic interference shielding at gigahertz frequency [J].
Hu, Haihua ;
Gao, Tong ;
Zhao, Xiaoning ;
Zhang, Jian ;
Zhang, Yanhui ;
Qin, Gaowu ;
Zhang, Xuefeng .
CARBON, 2019, 153 :330-336