Latest Advancements in Heat Transfer Enhancement in the Micro-channel Heat Sinks: A Review

被引:132
作者
Ramesh, K. Naga [1 ]
Sharma, T. Karthikeya [1 ]
Rao, G. Amba Prasad [1 ]
机构
[1] NIT Andhra Pradesh, Dept Mech Engn, Tadepalligudem, India
关键词
NANOFLUID FLOW; SINGLE-PHASE; FLUID-FLOW; THERMAL PERFORMANCE; MAGNETIC-FIELD; TRAPEZOIDAL MICROCHANNEL; HYBRID MICROCHANNEL; COOLING PERFORMANCE; FRICTION FACTOR; IMPINGING JETS;
D O I
10.1007/s11831-020-09495-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Miniaturization of the energy systems and high powered electronic devices necessitates the high capacity compact heat exchangers to dissipate the heat generated. Microchannel heatsinks (MCHS) are modern heat exchangers with the fluid flowing channels of size in microscale. These are very compact heat exchangers with higher ratios of heat transfer area to the volume. Huge research work has been going on to improve the hydraulic and thermal performance of the MCHS. This article provides the information about experimental and numerical studies that has been done on the heat transfer and its enhancement in micro-scale cooling devices. This review mainly concentrate on the heat transfer enhancement techniques in microchannel, numerical methods that has been implemented for the study of micro-channels and the parameters which effects the heat transfer rate. The recent studies on microchannel heat sink to improve its performance by geometry modifications, jet impingement, using Nano fluids, flow boiling and Magneto-hydrodynamics are thoroughly discussed in this article.
引用
收藏
页码:3135 / 3165
页数:31
相关论文
共 153 条
[1]   Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins [J].
Abdollahi, Ayoub ;
Mohammed, Hussein A. ;
Vanaki, Sh M. ;
Sharma, Rajnish N. .
AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) :3411-3418
[2]  
Abdullina K. I., 2015, Physics Procedia, V72, P351, DOI 10.1016/j.phpro.2015.09.109
[3]   Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell [J].
Abo-Zahhad, Essam M. ;
Ookawara, Shinichi ;
Radwan, Ali ;
El-Shazly, A. H. ;
Elkady, M. F. .
APPLIED ENERGY, 2019, 253
[4]   Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation [J].
Agostini, B ;
Watel, B ;
Bontemps, A ;
Thonon, B .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2004, 28 (2-3) :97-103
[5]   Review of magnetohydrodynamic pump applications [J].
Al-Habahbeh, O. M. ;
Al-Saqqa, M. ;
Safi, M. ;
Khater, T. Abo .
ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) :1347-1358
[6]   Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: Thermal performance and thermodynamic considerations [J].
Al-Rashed, Abdullah A. A. A. ;
Shahsavar, Amin ;
Entezari, Sajad ;
Moghimi, M. A. ;
Adio, S. A. ;
Truong Khang Nguyen .
APPLIED THERMAL ENGINEERING, 2019, 155 :247-258
[7]   Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink [J].
Alfaryjat, A. A. ;
Dobrovicescu, A. ;
Stanciu, D. .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2019, 27 (03) :501-513
[8]   Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink [J].
Alfaryjat, A. A. ;
Mohammed, H. A. ;
Adam, Nor Mariah ;
Stanciu, D. ;
Dobrovicescu, A. .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 5 :252-262
[9]   Miniaturization technologies applied to energy systems [J].
Ameel, TA ;
Warrington, RO ;
Wegeng, RS ;
Drost, MK .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (10-13) :969-982
[10]   On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition [J].
Anbumeenakshi, C. ;
Thansekhar, M. R. .
APPLIED THERMAL ENGINEERING, 2017, 113 :1437-1443