Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics

被引:44
|
作者
Zhang, Ting [1 ]
Zhou, Kai [2 ]
Chen, Z. Q. [1 ]
机构
[1] Wuhan Univ, Dept Phys, Hubei Nucl Solid Phys Key Lab, Wuhan 430072, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2015年 / 648卷
基金
中国国家自然科学基金;
关键词
Strain rate effect; Plastic deformation; Nanocrystalline copper; Molecular dynamics; RATE SENSITIVITY; GRAIN-BOUNDARY; ACTIVATION VOLUME; METALS; SIZE; FCC; DEPENDENCE;
D O I
10.1016/j.msea.2015.09.035
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The strain rate effect on the plastic deformation of nanocrystalline copper with mean grain sizes in the range of 3.8-27.3 nm has been investigated by using molecular dynamics simulation. The simulated results indicate that the critical mean grain size corresponding to the transition of plastic deformation mechanism is little influenced by the strain rate in the strain-rate range of 1 x 10(7)-1 x 10(10) s(-1). The simulated grain-size dependence of the strain rate sensitivity for strain rate below 1 x 10(8) s(-1) is in agreement with the experimental results of nanocrystalline copper reported in literatures. The strain rate sensitivity values for the simulated samples with mean grain sizes of 3.8 and 5.5 nm are 0.073 and 0.065 respectively. These results reveal that the stress-driven grain-boundary plastic deformation mechanisms such as grain-boundary sliding and migration are not as sensitive to strain rate as that expected for the thermally assisted mechanisms. Furthermore it is found that if the stacking faults act as obstacles to the motion of partial dislocations the strain rate sensitivity will increase. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 50 条
  • [1] Understanding the strain rate sensitivity of nanocrystalline copper using molecular dynamics simulations
    Rida, A.
    Micoulaut, M.
    Rouhaud, E.
    Makke, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
  • [2] Plastic deformation of nanocrystalline aluminum at high temperatures and strain rate
    Gerlich, A. P.
    Yue, L.
    Mendez, P. F.
    Zhang, H.
    ACTA MATERIALIA, 2010, 58 (06) : 2176 - 2185
  • [3] Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti
    Wang, F.
    Li, B.
    Gao, T. T.
    Huang, P.
    Xu, K. W.
    Lu, T. J.
    SURFACE & COATINGS TECHNOLOGY, 2013, 228 : S254 - S256
  • [4] Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics
    Zhou, Kai
    Liu, Bin
    Yao, Yijun
    Zhong, Kun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 615 : 92 - 97
  • [5] Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel
    Husain, Abdelrahim
    La, Peiqing
    Hongzheng, Yue
    Jie, Sheng
    MATERIALS, 2020, 13 (14)
  • [6] Atomistic simulations of the effect of Zr addition on the microstructure and plastic deformation of nanocrystalline copper
    Zhou, Kai
    Zhang, Ting
    Liu, Bin
    Yao, Yijun
    PHYSICA B-CONDENSED MATTER, 2018, 547 : 33 - 37
  • [7] Molecular Dynamics Study of Grain Size and Strain Rate Dependent Tensile Properties of Nanocrystalline Copper
    Xiang, Meizhen
    Cui, Junzhi
    Tian, Xia
    Chen, Jun
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) : 1215 - 1221
  • [8] Strain rates in molecular dynamics simulations of nanocrystalline metals
    Brandl, Christian
    Derlet, Peter M.
    Van Swygenhoven, Helena
    PHILOSOPHICAL MAGAZINE, 2009, 89 (34-36) : 3465 - 3475
  • [9] Molecular dynamics simulation of plastic deformation of polycrystalline cu under mechanical effect with ultrahigh strain rate
    Wang, Zhilong
    Luo, Kaiyu
    Liu, Yue
    Lu, Jinzhong
    Zhongguo Jiguang/Chinese Journal of Lasers, 2015, 42 (07):
  • [10] Molecular dynamics simulations of the preparation and deformation of nanocrystalline copper
    Zhang, YW
    Liu, P
    Lu, C
    ACTA MATERIALIA, 2004, 52 (17) : 5105 - 5114