Exact quantization rule and the invariant

被引:21
作者
Ma, ZQ [1 ]
Xu, BW
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
关键词
quantization rule; supersymmetric quantum mechanics; shape invariant potential; invariant;
D O I
10.7498/aps.55.1571
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present and prove the exact quantization rules both for the one-dimensional Schrodinger equation and for the three-dimensional Schrodinger equation with a spherically symmetric potential. In the exact quantization rule, in addition to the usual term N pi, there is an integral term, called the correction term. For the quantum systems with a so-called shape invariant potential in the supersymmetric quantum mechanics, we find that the correction term is an invariant I independent of the number of nodes in the wave functions. In those systems, the invariant can be determined with the help of the energy and the wave function of the ground state, and then, the energy levels of all the bound states can be easily calculated from the exact quantization rule. Conversely, the validity of the calculated energy levels shows that the correction term is an invariant in those quantum system with a shape invariant potential. The systems with a shape invariant potential we calculated in this paper are the one-dimensional systems with a finite square well, with the harmonic oscillator potential, with the Morse potential and its generalizations, with the Rosen-Morse potentials, with the Poschl-Teller potentials, with the Eckart potential, and with the Hulthen potential, and the three-dimensional systems of harmonic oscillators and the hydrogen atom.
引用
收藏
页码:1571 / 1579
页数:9
相关论文
共 16 条
[1]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[2]   DERIVATION OF THE S-MATRIX USING SUPERSYMMETRY [J].
COOPER, F ;
GINOCCHIO, JN ;
WIPF, A .
PHYSICS LETTERS A, 1988, 129 (03) :145-147
[3]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[4]   EXPLICIT WAVEFUNCTIONS FOR SHAPE-INVARIANT POTENTIALS BY OPERATOR TECHNIQUES [J].
DABROWSKA, JW ;
KHARE, A ;
SUKHATME, UP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (04) :L195-L200
[5]   EXACTNESS OF SUPERSYMMETRIC WKB SPECTRA FOR SHAPE-INVARIANT POTENTIALS [J].
DUTT, R ;
KHARE, A ;
SUKHATME, UP .
PHYSICS LETTERS B, 1986, 181 (3-4) :295-298
[6]  
ELANGE OL, 1991, OPERATOR METHODS QUA
[7]  
GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
[8]   SCATTERING-AMPLITUDES FOR SUPERSYMMETRIC SHAPE-INVARIANT POTENTIALS BY OPERATOR METHODS [J].
KHARE, A ;
SUKHATME, UP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09) :L501-L508
[9]   Wave mechanics and half-integral quantisation [J].
Kramers, HA .
ZEITSCHRIFT FUR PHYSIK, 1926, 39 (10/11) :828-840
[10]   Exact quantization rules for bound states of the Schrodinger equation [J].
Ma, ZQ ;
Xu, W .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (04) :599-610