Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours

被引:66
作者
Bharadwaj, Reshma [1 ,2 ]
Mukherji, Soumyo [1 ,2 ,3 ]
机构
[1] Indian Inst Technol, Ctr Res Nanotechnol & Sci, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Ctr Excellence Nanoelect, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Biosci & Bioengn, Bombay 400076, Maharashtra, India
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2014年 / 192卷
关键词
Explosive detection; Vapour detection; Gold nanoparticles; Localized surface plasmon resonance; U-bend fibre optic sensor; TRINITROTOLUENE; GLASS;
D O I
10.1016/j.snb.2013.11.026
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, we report a chemical sensor utilizing localized surface plasmon resonance (LSPR) of gold nanoparticles (GNP) for vapour phase detection of explosives like 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The GNP were immobilized on a U-bend fibre optic sensor probe of 200 pin core diameter and bend diameter of 1.5 mm for evanescent field based excitation of localized surface plasmons of the GNP. The immobilized GNP were functionalized with receptor molecules viz. 4-mercaptobenzoic acid (4-MBA), L-cysteine and cysteamine to provide the binding sites for the nitro-based explosive molecules. Binding of the explosive analytes to the surface moieties of the GNP was found to elicit refractive index changes in the environment surrounding the nanoparticles. This led to changes in the absorbance characteristics of the GNP-LSPR spectrum. Furthermore, the GNP coated probes modified with L-cysteine and cysteamine exhibited a high degree of selectivity towards TNT. The detection limit of the LSPR fibre optic probe for TNT vapours was found to be in the lower parts per billion (ppb) with further scope for improvement. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:804 / 811
页数:8
相关论文
共 27 条
  • [1] [Anonymous], 2007, E252007 ASTM INT, DOI DOI 10.1520/E2520-07
  • [2] Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength
    Bharadwaj, Reshma
    Sai, V. V. R.
    Thakare, Kamini
    Dhawangale, Arvind
    Kundu, Tapanendu
    Titus, Susan
    Verma, Pradeep Kumar
    Mukherji, Soumyo
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (07) : 3367 - 3370
  • [3] Colloidal gold-modified optical fiber for chemical and biochemical sensing
    Cheng, SF
    Chau, LK
    [J]. ANALYTICAL CHEMISTRY, 2003, 75 (01) : 16 - 21
  • [4] Comparison of chemical cleaning methods of glass in preparation for silanization
    Cras, JJ
    Rowe-Taitt, CA
    Nivens, DA
    Ligler, FS
    [J]. BIOSENSORS & BIOELECTRONICS, 1999, 14 (8-9) : 683 - 688
  • [5] Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene
    Dasary, Samuel S. R.
    Singh, Anant Kumar
    Senapati, Dulal
    Yu, Hongtao
    Ray, Paresh Chandra
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (38) : 13806 - 13812
  • [6] Supersensitive Detection of Explosives by Silicon Nanowire Arrays
    Engel, Yoni
    Elnathan, Roey
    Pevzner, Alexander
    Davidi, Guy
    Flaxer, Eli
    Patolsky, Fernando
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) : 6830 - 6835
  • [7] Haes A., 2004, ANAL BIOANAL CHEM, P1
  • [8] A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles
    Jiang, Ying
    Zhao, Hong
    Zhu, Ningning
    Lin, Yuqing
    Yu, Ping
    Mao, Lanqun
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) : 8601 - 8604
  • [9] Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range
    Khijwania, SK
    Gupta, BD
    [J]. OPTICS COMMUNICATIONS, 1998, 152 (4-6) : 259 - 262
  • [10] Optical fiber affinity biosensor based on localized surface plasmon resonance
    Mitsui, K
    Handa, Y
    Kajikawa, K
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (18) : 4231 - 4233