Dimension Formulae in Genus Zero and Uniqueness of Vertex Operator Algebras

被引:9
作者
van Ekeren, Jethro [1 ]
Moeller, Sven [2 ,3 ]
Scheithauer, Nils R. [2 ]
机构
[1] Univ Fed Fluminense, Niteroi, RJ, Brazil
[2] Tech Univ Darmstadt, Darmstadt, Germany
[3] Rutgers State Univ, Piscataway, NJ USA
关键词
MODULAR-INVARIANCE; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1093/imrn/rny038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a dimension formula for orbifold vertex operator algebras of central charge 24 by automorphisms of order n such that Gamma(0)(n) is a genus zero group. We then use this formula together with the inverse orbifold construction for automorphisms of orders 2, 4, 5, 6, and 8 to establish that each of the following fifteen Lie algebras is the weight-one space V-1 of exactly one holomorphic, C-2-cofinite vertex operator algebra V of CFT type and central charge 24: A(5)C(5)E(6,2), A(3)A(7,2)C(3)(2), A(8,2)F(4,2), B8E8,2, A(2)(2)A(5,2)(2)B(2), C8F42, A(4,2)(2)C(4,2), A(2,2)(4)D(4,4), B5E7,2F4, B4C62, A(4,5)(2), A(4)A(9,2)B(3), B6C10, A(1)C(5,3)G(2,2), and A(1,2)A(3,4)(3).
引用
收藏
页码:2145 / 2204
页数:60
相关论文
共 49 条
[1]  
[Anonymous], ARXIV161208123V1MATH
[2]  
[Anonymous], 1999, Sphere packings, lattices and groups
[3]  
[Anonymous], 2016, A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications
[4]  
[Anonymous], GRADUATE TEXTS MATH
[6]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
CN79 Conway J.H., 1979, Bull. London Math. Soc., V11, P308, DOI DOI 10.1112/BLMS/11.3.308
[9]   CONFORMAL FIELD-THEORY, TRIALITY AND THE MONSTER GROUP [J].
DOLAN, L ;
GODDARD, P ;
MONTAGUE, P .
PHYSICS LETTERS B, 1990, 236 (02) :165-172
[10]   Conformal field theories, representations and lattice constructions [J].
Dolan, L ;
Goddard, P ;
Montague, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) :61-120