Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement

被引:85
作者
Hirst, Louise C. [1 ]
Fujii, Hiromasa [2 ]
Wang, Yunpeng [2 ]
Sugiyama, Masakazu [2 ]
Ekins-Daukes, Nicholas J. [3 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1138654, Japan
[3] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2014年 / 4卷 / 01期
关键词
Hot carrier solar cell (HCSC); quantum well (QW); SOLAR-CELLS; GAAS; PHOTOLUMINESCENCE; SCATTERING; ELECTRONS; RATES;
D O I
10.1109/JPHOTOV.2013.2289321
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In a hot carrier solar cell, the steady-state carrier population is hot relative to the surrounding lattice. This requires an absorber material which restricts carrier-phonon interaction and, therefore, reduces entropic loss during thermalization. The limiting efficiency of these devices approaches 85%: the Carnot limit for a solar energy collector. A spectroscopic analysis of GaAsP/InGaAs quantum well structures shows that carrier cooling in single quantum well samples is dominated by the rate of radiative recombination, leading to unprecedented carrier cooling lifetime (tau = 5.8 +/- 0.1 ns). This exceptional lifetime arises due to state saturation, frustrating the carrier scattering processes. A steady-state carrier population temperature >100 K above the lattice temperature is measured under illumination equivalent to 10 000 Suns. We calculate the projected efficiency >40% for a device with these characteristics, amounting to a 3% efficiency enhancement over equivalent single-junction devices.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 32 条
[1]   Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber [J].
Aliberti, P. ;
Feng, Y. ;
Takeda, Y. ;
Shrestha, S. K. ;
Green, M. A. ;
Conibeer, G. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[2]   HOT-ELECTRON ENERGY RELAXATION RATES IN GAAS/GAAIAS QUANTUM WELLS [J].
BALKAN, N ;
RIDLEY, BK ;
EMENY, M ;
GOODRIDGE, I .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1989, 4 (10) :852-857
[3]  
Blencowe M. P., 2001, PHONONS LOW DINEMSIO, P123
[4]   Short-circuit current enhancement in Bragg stack multi-quantum-well solar cells for multi-junction space cell applications [J].
Bushnell, DB ;
Ekins-Daukes, NJ ;
Barnham, KWJ ;
Connolly, JP ;
Roberts, JS ;
Hill, G ;
Airey, R ;
Mazzer, M .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 75 (1-2) :299-305
[5]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[6]   Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP [J].
Clady, Raphael ;
Tayebjee, Murad J. Y. ;
Aliberti, Pasquale ;
Koenig, Dirk ;
Ekins-Daukes, Nicholas John ;
Conibeer, Gavin J. ;
Schmidt, Timothy W. ;
Green, Martin A. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :82-92
[7]   Selective energy contacts for hot carrier solar cells [J].
Conibeer, G. J. ;
Jiang, C. -W. ;
Konig, D. ;
Shrestha, S. ;
Walsh, T. ;
Green, M. A. .
THIN SOLID FILMS, 2008, 516 (20) :6968-6973
[8]   Progress on hot carrier cells [J].
Conibeer, Gavin ;
Ekins-Daukes, Nicholas ;
Guillemoles, Jean-Francois ;
Konig, Dirk ;
Cho, Eun-Chel ;
Jiang, Chu-Wei ;
Shrestha, Santosh ;
Green, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) :713-719
[9]   Strain-balanced GaAsP/InGaAs quantum well solar cells [J].
Ekins-Daukes, NJ ;
Barnham, KWJ ;
Connolly, JP ;
Roberts, JS ;
Clark, JC ;
Hill, G ;
Mazzer, M .
APPLIED PHYSICS LETTERS, 1999, 75 (26) :4195-4197
[10]   A hot-carrier solar cell with optical energy selective contacts [J].
Farrell, D. J. ;
Takeda, Y. ;
Nishikawa, K. ;
Nagashima, T. ;
Motohiro, T. ;
Ekins-Daukes, N. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)