Development of Methods for Cross-Sectional HIV Incidence Estimation in a Large, Community Randomized Trial

被引:31
|
作者
Laeyendecker, Oliver [1 ,2 ]
Kulich, Michal [3 ]
Donnell, Deborah [4 ]
Komarek, Arnost [3 ]
Omelka, Marek [3 ]
Mullis, Caroline E. [2 ]
Szekeres, Greg [5 ]
Piwowar-Manning, Estelle [6 ]
Fiamma, Agnes [5 ]
Gray, Ronald H. [7 ,8 ]
Lutalo, Tom [8 ]
Morrison, Charles S. [9 ]
Salata, Robert A. [10 ,11 ]
Chipato, Tsungai [12 ]
Celum, Connie [13 ]
Kahle, Erin M. [14 ]
Taha, Taha E. [7 ]
Kumwenda, Newton I. [7 ]
Karim, Quarraisha Abdool [15 ]
Naranbhai, Vivek [16 ]
Lingappa, Jairam R. [17 ,18 ]
Sweat, Michael D. [19 ]
Coates, Thomas [5 ]
Eshleman, Susan H. [6 ]
机构
[1] NIAID, NIH, Bethesda, MD 20892 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[3] Charles Univ Prague, Fac Math & Phys, Dept Probabil & Stat, Prague, Czech Republic
[4] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98104 USA
[5] Univ Calif Los Angeles, UCLA Program Global Hlth, Los Angeles, CA USA
[6] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21205 USA
[7] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[8] Rakai Hlth Sci Program, Entebbe, Uganda
[9] Family Hlth Int, Clin Sci, Durham, NC USA
[10] Case Western Reserve Univ, Div Infect Dis & HIV Med, Cleveland, OH 44106 USA
[11] Univ Hosp Cleveland, Case Med Ctr, Cleveland, OH 44106 USA
[12] Univ Zimbabwe, Harare, Zimbabwe
[13] Univ Washington, Dept Global Hlth Med & Epidemiol, Seattle, WA 98195 USA
[14] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[15] Columbia Univ, Dept Epidemiol, Mailman Sch Publ Hlth, New York, NY USA
[16] Univ KwaZulu Natal, Nelson R Mandela Sch Med, Doris Duke Med Res Inst, Ctr AIDS Programme Res South Africa CAPRISA, Congella, South Africa
[17] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA
[18] Univ Washington, Dept Med & Pediat, Seattle, WA 98195 USA
[19] Med Univ S Carolina, Dept Psychiat & Behav Sci, Charleston, SC 29425 USA
来源
PLOS ONE | 2013年 / 8卷 / 11期
基金
美国国家卫生研究院;
关键词
ENZYME-IMMUNOASSAY; PROJECT ACCEPT; RAKAI DISTRICT; UNITED-STATES; PREVENTION; TRANSMISSION; SPECIFICITY; ACYCLOVIR; INFECTION; UGANDA;
D O I
10.1371/journal.pone.0078818
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Accurate methods of HIV incidence determination are critically needed to monitor the epidemic and determine the population level impact of prevention trials. One such trial, Project Accept, a Phase III, community-randomized trial, evaluated the impact of enhanced, community-based voluntary counseling and testing on population-level HIV incidence. The primary endpoint of the trial was based on a single, cross-sectional, post-intervention HIV incidence assessment. Methods and Findings: Test performance of HIV incidence determination was evaluated for 403 multi-assay algorithms [MAAs] that included the BED capture immunoassay [BED-CEIA] alone, an avidity assay alone, and combinations of these assays at different cutoff values with and without CD4 and viral load testing on samples from seven African cohorts (5,325 samples from 3,436 individuals with known duration of HIV infection [1 month to >10 years]). The mean window period (average time individuals appear positive for a given algorithm) and performance in estimating an incidence estimate (in terms of bias and variance) of these MAAs were evaluated in three simulated epidemic scenarios (stable, emerging and waning). The power of different test methods to detect a 35% reduction in incidence in the matched communities of Project Accept was also assessed. A MAA was identified that included BED-CEIA, the avidity assay, CD4 cell count, and viral load that had a window period of 259 days, accurately estimated HIV incidence in all three epidemic settings and provided sufficient power to detect an intervention effect in Project Accept. Conclusions: In a Southern African setting, HIV incidence estimates and intervention effects can be accurately estimated from cross-sectional surveys using a MAA. The improved accuracy in cross-sectional incidence testing that a MAA provides is a powerful tool for HIV surveillance and program evaluation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cross-Sectional HIV Incidence Estimation in HIV Prevention Research
    Brookmeyer, Ron
    Laeyendecker, Oliver
    Donnell, Deborah
    Eshleman, Susan H.
    JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2013, 63 : S233 - S239
  • [2] Cross-sectional HIV incidence estimation in an evolving epidemic
    Morrison, Doug
    Laeyendecker, Oliver
    Brookmeyer, Ron
    STATISTICS IN MEDICINE, 2019, 38 (19) : 3614 - 3627
  • [3] Statistical considerations for cross-sectional HIV incidence estimation based on recency test
    Gao, Fei
    Bannick, Marlena
    STATISTICS IN MEDICINE, 2022, 41 (08) : 1446 - 1461
  • [4] Sample Size Methods for Estimating HIV Incidence from Cross-Sectional Surveys
    Konikoff, Jacob
    Brookmeyer, Ron
    BIOMETRICS, 2015, 71 (04) : 1121 - 1129
  • [5] On the Use of Adjusted Cross-Sectional Estimators of HIV Incidence
    Wang, Rui
    Lagakos, Stephen W.
    JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2009, 52 (05) : 538 - 547
  • [6] Evaluation of multi-assay algorithms for cross-sectional HIV incidence estimation in settings with universal antiretroviral treatment
    Grant-McAuley, Wendy
    Laeyendecker, Oliver
    Monaco, Daniel
    Chen, Athena
    Hudelson, Sarah E.
    Klock, Ethan
    Brookmeyer, Ron
    Morrison, Douglas
    Piwowar-Manning, Estelle
    Morrison, Charles S.
    Hayes, Richard
    Ayles, Helen
    Bock, Peter
    Kosloff, Barry
    Shanaube, Kwame
    Mandla, Nomtha
    van Deventer, Anneen
    Ruczinski, Ingo
    Kammers, Kai
    Larman, H. Benjamin
    Eshleman, Susan H.
    BMC INFECTIOUS DISEASES, 2022, 22 (01)
  • [7] Estimation of HIV Incidence in a Large, Community-Based, Randomized Clinical Trial: NIMH Project Accept (HIV Prevention Trials Network 043)
    Laeyendecker, Oliver
    Piwowar-Manning, Estelle
    Fiamma, Agnes
    Kulich, Michal
    Donnell, Deborah
    Bassuk, Deb
    Mullis, Caroline E.
    Chin, Craig
    Swanson, Priscilla
    Hackett, John, Jr.
    Clarke, William
    Marzinke, Mark
    Szekeres, Greg
    Gray, Glenda
    Richter, Linda
    Alexandre, Michel W.
    Chariyalertsak, Suwat
    Chingono, Alfred
    Celentano, David D.
    Morin, Stephen F.
    Sweat, Michael
    Coates, Thomas
    Eshleman, Susan H.
    PLOS ONE, 2013, 8 (07):
  • [8] Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence
    Wang, Rui
    Lagakos, Stephen W.
    BIOMETRICS, 2010, 66 (03) : 864 - 874
  • [9] HIV incidence is rapidly increasing with age among young men who have sex with men in China: a multicentre cross-sectional survey
    Mao, X.
    Wang, Z.
    Hu, Q.
    Huang, C.
    Yan, H.
    Wang, Z.
    Lu, L.
    Zhuang, M.
    Chen, X.
    Fu, J.
    Geng, W.
    Jiang, Y.
    Shang, H.
    Xu, J.
    HIV MEDICINE, 2018, 19 (08) : 513 - 522
  • [10] Community viral load, antiretroviral therapy coverage, and HIV incidence in India: a cross-sectional, comparative study
    Solomon, Sunil Suhas
    Mehta, Shruti H.
    McFall, Allison M.
    Srikrishnan, Aylur K.
    Saravanan, Shanmugam
    Laeyendecker, Oliver
    Balakrishnan, Pachamuthu
    Celentano, David D.
    Solomon, Suniti
    Lucas, Gregory M.
    LANCET HIV, 2016, 3 (04): : E183 - E190