Multi-attribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators

被引:30
|
作者
Saha, Abhijit [1 ]
Majumder, Priyanka [1 ]
Dutta, Debjit [2 ]
Debnath, Bijoy Krishna [3 ]
机构
[1] Techno Coll Engn Agartala, Fac Math, Agartala 799004, India
[2] NIT Arunachal Pradesh, Fac Basic & Appl Sci, Yupia 791112, Arunachal Prade, India
[3] Tezpur Univ, Fac Appl Sci, Tezpur 784028, Assam, India
关键词
q-rung orthopair fuzzy numbers; Fairly operations; q-rung orthopair fuzzy weighted fairly aggregation operator; q-rung orthopair fuzzy ordered weighted fairly aggregation operator; MADM; Supplier selection; PYTHAGOREAN MEMBERSHIP GRADES; BONFERRONI OPERATORS; SIMILARITY MEASURE; OPERATIONAL LAWS; MEAN OPERATORS; SETS; TOPSIS; DISTANCES; SELECTION;
D O I
10.1007/s12652-020-02551-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, in view of expressing the uncertain information more elegantly, we shall enlighten theq-rung orthopair fuzzy sets (q-ROFSs) and theq-rung orthopair fuzzy numbers (q-ROFNs) which are considered to be superior of the intuitionistic fuzzy sets and the Pythagorean fuzzy sets, respectively. Here our aim is towards the development of some new operational laws and their corresponding weighted aggregation operators under theq-rung orthopair fuzzy environment. In this regard, at the very beginning, we define some new neutral or fair operational laws that include the concept of proportional distribution to achieve a neutral or fair treatment to the membership and non-membership functions ofq-ROFN. Subsequently, with these operations, we developq-rung orthopair fuzzy weighted fairly aggregation operator (qROFWFA) andq-rung orthopair fuzzy ordered weighted fairly aggregation operator (qROFOWFA) which can neutrally or fairly serve the membership and non-membership degrees. We observe the noteworthy features of these proposed aggregation operators. Furthermore, we exercise also an MADM (multi-attribute decision-making) approach with multiple decision makers and partial weight information in the framework ofq-rung orthopair fuzzy sets. At the end of this study, we provide an illustrative example to highlight the feasibility and a practical look of the approach proposed herein.
引用
收藏
页码:8149 / 8171
页数:23
相关论文
共 50 条
  • [41] Some q-rung orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making
    Li, Li
    Zhang, Runtong
    Wang, Jun
    Shang, Xiaopu
    ARCHIVES OF CONTROL SCIENCES, 2018, 28 (04): : 551 - 583
  • [42] Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making
    Hussain, A.
    Ali, M., I
    Mahmood, T.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2020, 17 (03): : 117 - 134
  • [43] Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making
    Wei, Guiwu
    Gao, Hui
    Wei, Yu
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (07) : 1426 - 1458
  • [44] Aggregation operators and VIKOR method based on complex q-rung orthopair uncertain linguistic informations and their applications in multi-attribute decision making
    Tahir Mahmood
    Zeeshan Ali
    Computational and Applied Mathematics, 2020, 39
  • [45] Aggregation operators and VIKOR method based on complex q-rung orthopair uncertain linguistic informations and their applications in multi-attribute decision making
    Mahmood, Tahir
    Ali, Zeeshan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [46] Multi-attribute group decision-making methods based on q-rung orthopair fuzzy linguistic sets
    Wang, Honghai
    Ju, Yanbing
    Liu, Peide
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2019, 34 (06) : 1129 - 1157
  • [47] A novel approach to multi-attribute group decision making based on power neutrality aggregation operator for q-rung orthopair fuzzy sets
    Aydemir, Salih Berkan
    Gunduz, Sevcan Yilmaz
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (03) : 1454 - 1481
  • [48] The Extension of TOPSIS Method for Multi-Attribute Decision-Making With q-Rung Orthopair Hesitant Fuzzy Sets
    Wang, Yuhui
    Shan, Zhifeng
    Huang, Lin
    IEEE ACCESS, 2020, 8 (165151-165167) : 165151 - 165167
  • [49] Multi-attribute decision-making with (p, q)-rung orthopair fuzzy sets
    Shahzadi, Gulfam
    Shahzadi, Sundas
    Ahmad, Rana Talha
    Deveci, Muhammet
    GRANULAR COMPUTING, 2024, 9 (01)
  • [50] Multi-attribute decision-making with (p, q)-rung orthopair fuzzy sets
    Gulfam Shahzadi
    Sundas Shahzadi
    Rana Talha Ahmad
    Muhammet Deveci
    Granular Computing, 2024, 9