Flexibility of Schubert classes

被引:8
作者
Coskun, Izzet [1 ]
Robles, Colleen [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Schubert class; Cominuscule variety; Rational homogeneous variety; HERMITIAN SYMMETRIC-SPACES; PROJECTIVE GEOMETRY; VARIETIES; RIGIDITY;
D O I
10.1016/j.difgeo.2013.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we discuss the flexibility of Schubert classes in homogeneous varieties. We give several constructions for representing multiples of a Schubert class by irreducible subvarieties. We sharpen [22, Theorem 3.1] by proving that every positive multiple of an obstructed class in a cominuscule homogeneous variety can be represented by an irreducible subvariety. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:759 / 774
页数:16
相关论文
共 26 条
[1]  
Billey S., 2000, PROG MATH, V182
[2]  
Borel A., 1961, Bull. Soc. Math. France, V89, P461
[3]  
Bryant R., 2005, ANN MATH STUD, VAM-153
[4]   Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians [J].
Coskun, I .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :223-284
[5]  
Coskun I., 2013, Clay Mathematics Proceedings, V18, P205
[6]  
Coskun I., 2013, ISR J MATH IN PRESS
[7]  
Coskun I, 2011, J DIFFER GEOM, V87, P493
[8]   Restriction varieties and geometric branching rules [J].
Coskun, Izzet .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2441-2502
[9]  
Fulton W., 1998, INTERSECTION THEORY, V2nd
[10]  
Griffiths P., 1978, PRINCIPLES ALGEBRAIC