The asymptotically commuting bounded approximation property of Banach spaces

被引:3
作者
Oja, Eve [1 ,2 ]
Zolk, Indrek [1 ]
机构
[1] Univ Tartu, Fac Math & Comp Sci, EE-50409 Tartu, Estonia
[2] Estonian Acad Sci, EE-10130 Tallinn, Estonia
关键词
Banach spaces; The asymptotically commuting bounded approximation property; Approximation properties defined by operator ideals; Extension operators; (Locally) complemented subspaces; OPERATORS; APPROXIMABILITY; PROJECTIONS; REFLEXIVITY; NUCLEAR; IDEALS;
D O I
10.1016/j.jfa.2013.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study the asymptotically commuting bounded approximation property of Banach spaces. This property is, e.g., enjoyed by any dual space with the bounded approximation property. The principal result is the following: if a Banach space X has the asymptotically lambda-commuting bounded approximation property, then X is saturated with locally lambda-complemented separable subspaces enjoying the A-commuting bounded approximation property. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1068 / 1087
页数:20
相关论文
共 39 条
[1]  
[Anonymous], 1991, Lond. Math. Soc. Lecture Notes
[2]  
[Anonymous], 1993, LECT NOTES MATH
[3]   REFLEXIVITY AND SUMMABILITY [J].
BAERNSTEIN, A .
STUDIA MATHEMATICA, 1972, 42 (01) :91-+
[4]   BANACH-SAKS PROPERTIES AND SPREADING MODELS [J].
BEAUZAMY, B .
MATHEMATICA SCANDINAVICA, 1979, 44 (02) :357-384
[5]   Approximation properties determined by operator ideals and approximability of homogeneous polynomials and holomorphic functions [J].
Berrios, Sonia ;
Botelho, Geraldo .
STUDIA MATHEMATICA, 2012, 208 (02) :97-116
[6]   ON J-CONVEXITY AND SOME ERGODIC SUPER-PROPERTIES OF BANACH-SPACES [J].
BRUNEL, A ;
SUCHESTON, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :79-90
[7]  
Casazza PG, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P271, DOI 10.1016/S1874-5849(01)80009-7
[8]  
Diestel J., 1984, GRAD TEXTS MATH, V92
[9]  
Dunford N, 1958, Linear operators, part I: general theory
[10]  
Fakhoury H, 1972, J FUNCT ANAL, V11, P436, DOI [10.1016/0022-1236(72)90065-1, 10.1016/0022-1236(72)9 0065-1, DOI 10.1016/0022-1236(72)90065-1]