Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers

被引:36
作者
Mattiello, M
Niklès, M
Schilt, S
Thévenaz, L
Salhi, A
Barat, D
Vicet, A
Rouillard, Y
Werner, R
Koeth, J
机构
[1] Omnisens SA, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Lab Nanophoton & Metrol, NAM, CH-1015 Lausanne, Switzerland
[3] Univ Montpellier 2, Ctr Elect & Microelect Montpellier, CEM2, UMR CNRS,5507, F-34095 Montpellier 05, France
[4] Nanoplus Nanosyst & Technol GmbH, D-97218 Gerbrunn, Germany
关键词
photoacoustic spectroscopy; antimonide; semiconductor lasers; trace gas monitoring; Helmholtz resonator;
D O I
10.1016/j.saa.2005.11.006
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 mu m atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:952 / 958
页数:7
相关论文
共 10 条
[1]   Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance [J].
Barbieri, S ;
Pellaux, JP ;
Studemann, E ;
Rosset, D .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (06) :2458-2461
[2]   CELL COATINGS TO MINIMIZE SAMPLE (NH3 AND N2H4) ADSORPTION FOR LOW-LEVEL PHOTOACOUSTIC DETECTION [J].
BECK, SM .
APPLIED OPTICS, 1985, 24 (12) :1761-1763
[3]   ON PROPAGATION OF SOUND WAVES IN A CYLINDRICAL CONDUIT [J].
BENADE, AH .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1968, 44 (02) :616-&
[4]  
BLACKSTOCK DT, 2000, FUNDAMENTALS PHYS AC, P151
[5]  
Kastle R, 1996, APPL PHYS B-LASERS O, V63, P389, DOI 10.1007/BF01828744
[6]   The HITRAN 2004 molecular spectroscopic database [J].
Rothman, LS ;
Jacquemart, D ;
Barbe, A ;
Benner, DC ;
Birk, M ;
Brown, LR ;
Carleer, MR ;
Chackerian, C ;
Chance, K ;
Coudert, LH ;
Dana, V ;
Devi, VM ;
Flaud, JM ;
Gamache, RR ;
Goldman, A ;
Hartmann, JM ;
Jucks, KW ;
Maki, AG ;
Mandin, JY ;
Massie, ST ;
Orphal, J ;
Perrin, A ;
Rinsland, CP ;
Smith, MAH ;
Tennyson, J ;
Tolchenov, RN ;
Toth, RA ;
Vander Auwera, J ;
Varanasi, P ;
Wagner, G .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 96 (02) :139-204
[7]   Wavelength modulation photoacoustic spectroscopy:: Theoretical description and experimental results [J].
Schilt, S ;
Thévenaz, L .
INFRARED PHYSICS & TECHNOLOGY, 2006, 48 (02) :154-162
[8]   Application of antimonide diode lasers in photoacoustic spectroscopy [J].
Schilt, S ;
Vicet, A ;
Werner, R ;
Mattiello, M ;
Thévenaz, L ;
Salhi, A ;
Rouillard, Y ;
Koeth, J .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (14) :3431-3436
[9]   Wavelength modulation spectroscopy:: combined frequency and intensity laser modulation [J].
Schilt, S ;
Thévenaz, L ;
Robert, P .
APPLIED OPTICS, 2003, 42 (33) :6728-6738
[10]   Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection [J].
Zeninari, V ;
Kapitanov, VA ;
Courtois, D ;
Ponomarev, YN .
INFRARED PHYSICS & TECHNOLOGY, 1999, 40 (01) :1-23