A personalised screening strategy for diabetic retinopathy: a cost-effectiveness perspective

被引:9
作者
Emamipour, Sajad [1 ]
van der Heijden, Amber A. W. A. [2 ]
Nijpels, Giel [2 ]
Elders, Petra [2 ]
Beulens, Joline W. J. [2 ]
Postma, Maarten J. [3 ,4 ,5 ]
van Boven, Job F. M. [1 ]
Feenstra, Talitha L. [4 ,6 ,7 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Pharm & Pharmacol, NL-9700 RB Groningen, Netherlands
[2] Univ Amsterdam, Dept Gen Practice & Elderly Care Med, Locat VU, Med Ctr, Amsterdam, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Hlth Sci, Groningen, Netherlands
[4] Univ Groningen, Fac Sci & Engn, Groningen Res Inst Pharm, Groningen, Netherlands
[5] Univ Groningen, Fac Econ & Business, Dept Econ Econometr & Finance, Groningen, Netherlands
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[7] Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands
基金
欧盟地平线“2020”;
关键词
Cost-effectiveness; Diabetic retinopathy; Risk assessment; Screening intervals; MAJOR RISK-FACTORS; GLOBAL PREVALENCE; INTERVAL; OPTIMIZATION; FREQUENCY; PROGRAM; MODEL;
D O I
10.1007/s00125-020-05239-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis In this study we examined the cost-effectiveness of three different screening strategies for diabetic retinopathy: using a personalised adaptive model, annual screening (fixed intervals), and the current Dutch guideline (stratified based on previous retinopathy grade). Methods For each individual, optimal diabetic retinopathy screening intervals were determined, using a validated risk prediction model. Observational data (1998-2017) from the Hoorn Diabetes Care System cohort of people with type 2 diabetes were used (n = 5514). The missing values of retinopathy grades were imputed using two scenarios of slow and fast sight-threatening retinopathy (STR) progression. By comparing the model-based screening intervals to observed time to develop STR, the number of delayed STR diagnoses was determined. Costs were calculated using the healthcare perspective and the societal perspective. Finally, outcomes and costs were compared for the different screening strategies. Results For the fast STR progression scenario, personalised screening resulted in 11.6% more delayed STR diagnoses and euro11.4 less costs per patient compared to annual screening from a healthcare perspective. The personalised screening model performed better in terms of timely diagnosis of STR (8.8% less delayed STR diagnosis) but it was slightly more expensive (euro1.8 per patient from a healthcare perspective) than the Dutch guideline strategy. Conclusions/interpretation The personalised diabetic retinopathy screening model is more cost-effective than the Dutch guideline screening strategy. Although the personalised screening strategy was less effective, in terms of timely diagnosis of STR patients, than annual screening, the number of delayed STR diagnoses is low and the cost saving is considerable. With around one million people with type 2 diabetes in the Netherlands, implementing this personalised model could save euro11.4 million per year compared with annual screening, at the cost of 658 delayed STR diagnoses with a maximum delayed time to diagnosis of 48 months.
引用
收藏
页码:2452 / 2461
页数:10
相关论文
共 30 条
[1]  
ALDINGTON SJ, 1995, DIABETOLOGIA, V38, P437, DOI 10.1007/BF00410281
[2]   Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy [J].
Aspelund, T. ;
Porisdottir, O. ;
Olafsdottir, E. ;
Gudmundsdottir, A. ;
Einarsdottir, A. B. ;
Mehlsen, J. ;
Einarsson, S. ;
Palsson, O. ;
Einarsson, G. ;
Bek, T. ;
Stefansson, E. .
DIABETOLOGIA, 2011, 54 (10) :2525-2532
[3]  
CERTE, 2020, INT MED DIAGN ADV PR, DOI [10.1002/jbio.202000203, DOI 10.1002/JBIO.202000203]
[4]   Can the Retinal Screening Interval Be Safely Increased to 2 Years for Type 2 Diabetic Patients Without Retinopathy? [J].
Chalk, Daniel ;
Pitt, Martin ;
Vaidya, Bijay ;
Stein, Ken .
DIABETES CARE, 2012, 35 (08) :1663-1668
[5]   IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J].
Cho, N. H. ;
Shaw, J. E. ;
Karuranga, S. ;
Huang, Y. ;
Fernandes, J. D. da Rocha ;
Ohlrogge, A. W. ;
Malanda, B. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 :271-281
[6]   Current Epidemiology of Diabetic Retinopathy and Diabetic Macular Edema [J].
Ding, Jie ;
Wong, Tien Yin .
CURRENT DIABETES REPORTS, 2012, 12 (04) :346-354
[7]   Personalized risk-based screening for diabetic retinopathy: A multivariate approach versus the use of stratification rules [J].
Garcia-Finana, Marta ;
Hughes, David M. ;
Cheyne, Christopher P. ;
Broadbent, Deborah M. ;
Wang, Amu ;
Komarek, Arnost ;
Stratton, Irene M. ;
Mobayen-Rahni, Mehrdad ;
Alshukri, Ayesh ;
Vora, Jiten P. ;
Harding, Simon P. .
DIABETES OBESITY & METABOLISM, 2019, 21 (03) :560-568
[8]  
Heijden AAVD, 2016, INNOVATIVE STRATEGY
[9]   Burden of disease of type 2 diabetes mellitus: cost of illness and quality of life estimated using the Maastricht Study [J].
Janssen, L. M. M. ;
Hiligsmann, M. ;
Elissen, A. M. J. ;
Joore, M. A. ;
Schaper, N. C. ;
Bosma, J. H. A. ;
Stehouwer, C. D. A. ;
Sep, S. J. S. ;
Koster, A. ;
Schram, M. T. ;
Evers, S. M. A. A. .
DIABETIC MEDICINE, 2020, 37 (10) :1759-1765
[10]   Incidence and Progression of Diabetic Retinopathy During 17 Years of a Population-Based Screening Program in England [J].
Jones, Colin D. ;
Greenwood, Richard H. ;
Misra, Aseema ;
Bachmann, Max O. .
DIABETES CARE, 2012, 35 (03) :592-596