Quantum-limited frequency fluctuations in a terahertz laser

被引:136
作者
Vitiello, Miriam S. [1 ,2 ,3 ,4 ]
Consolino, Luigi [1 ,2 ]
Bartalini, Saverio [1 ,2 ]
Taschin, Andrea [1 ,2 ]
Tredicucci, Alessandro [3 ,4 ]
Inguscio, Massimo [1 ,2 ,5 ]
De Natale, Paolo [1 ,2 ]
机构
[1] CNR, Ist Nazl Ott, I-50019 Sesto Fiorentino, FI, Italy
[2] LENS European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, FI, Italy
[3] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[4] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[5] Univ Firenze, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, FI, Italy
关键词
CASCADE LASERS; INTRINSIC LINEWIDTH; NARROW-LINEWIDTH; ROOM-TEMPERATURE; PHASE-LOCKING; OSCILLATOR; OPERATION; EMISSION; NOISE;
D O I
10.1038/nphoton.2012.145
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum cascade lasers(1,2) can be considered the primary achievement of electronic band structure engineering, showing how artificial materials can be created through quantum design to have tailor-made properties that are otherwise non-existent in nature. Indeed, quantum cascade lasers can be used as powerful testing grounds of the fundamental physical parameters determined by their quantum nature, including the intrinsic linewidth of laser emission(3), which in such lasers is significantly affected by the optical and thermal photon number generated in the laser cavity. Here, we report experimental evidence of linewidth values approaching the quantum limit(4,5) in far-infrared quantum cascade lasers. Despite the broadening induced by thermal photons, the measured linewidth results narrower than that found in any other semiconductor laser to date. By performing noise measurements with unprecedented sensitivity levels, we highlight the key role of gain medium engineering(6) and demonstrate that properly designed semiconductor-heterostructure lasers can unveil the mechanisms underlying the laser-intrinsic phase noise, revealing the link between device properties and the quantum-limited linewidth.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 40 条
[1]  
[Anonymous], 2003, SENSING TERAHERTZ RA
[2]  
[Anonymous], ACTAASTRONOM
[3]  
Barbieri S, 2010, NAT PHOTONICS, V4, P636, DOI [10.1038/nphoton.2010.125, 10.1038/NPHOTON.2010.125]
[4]   Linewidth and tuning characteristics of terahertz quantum cascade lasers [J].
Barkan, A ;
Tittel, FK ;
Mittleman, DM ;
Dengler, R ;
Siegel, PH ;
Scalari, G ;
Ajili, L ;
Faist, J ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA .
OPTICS LETTERS, 2004, 29 (06) :575-577
[5]   Frequency-comb-referenced quantum-cascade laser at 4.4 μm [J].
Bartalini, S. ;
Cancio, P. ;
Giusfredi, G. ;
Mazzotti, D. ;
De Natale, P. ;
Borri, S. ;
Galli, I. ;
Leveque, T. ;
Gianfrani, L. .
OPTICS LETTERS, 2007, 32 (08) :988-990
[6]   Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser [J].
Bartalini, S. ;
Borri, S. ;
Galli, I. ;
Giusfredi, G. ;
Mazzotti, D. ;
Edamura, T. ;
Akikusa, N. ;
Yamanishi, M. ;
De Natale, P. .
OPTICS EXPRESS, 2011, 19 (19) :17996-18003
[7]   Observing the Intrinsic Linewidth of a Quantum-Cascade Laser: Beyond the Schawlow-Townes Limit [J].
Bartalini, S. ;
Borri, S. ;
Cancio, P. ;
Castrillo, A. ;
Galli, I. ;
Giusfredi, G. ;
Mazzotti, D. ;
Gianfrani, L. ;
De Natale, P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[8]   Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser [J].
Baryshev, A. ;
Hovenier, J. N. ;
Adam, A. J. L. ;
Kasalynas, I. ;
Gao, J. R. ;
Klaassen, T. O. ;
Williams, B. S. ;
Kumar, S. ;
Hu, Q. ;
Reno, J. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (03)
[9]   Frequency and phase-lock control of a 3 THz quantum cascade laser [J].
Betz, AL ;
Boreiko, RT ;
Williams, BS ;
Kumar, S ;
Hu, Q ;
Reno, JL .
OPTICS LETTERS, 2005, 30 (14) :1837-1839
[10]   Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers [J].
Callebaut, H ;
Kumar, S ;
Williams, BS ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :645-647