A survey on nonlinear Schrodinger equation with growing nonlocal nonlinearity

被引:0
作者
Maeda, Masaya [1 ]
Masaki, Satoshi [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
来源
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS | 2015年 / 64卷
关键词
Nonlinear Schrodinger equation; Hartree equation; Schrodinger-Poisson system; ground state;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider nonlinear Schrodinger equation with nonlocal nonlinearity which is described by a growing interaction potential. This model contains low-dimensional Schrodinger Poisson system. We briefly survey recent progress on this subject and then show existence of ground state in a specific model.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 10 条
[1]   The one-dimensional Schrodinger-Newton equations [J].
Choquard, Philippe ;
Stubbe, Joachim .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (02) :177-184
[2]   Well posedness and smoothing effect of Schrodinger-Poisson equation [J].
De Leo, M. ;
Rial, D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
[3]   On the existence of ground states for nonlinear Schrodinger-Poisson equation [J].
De Leo, Mariano .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) :979-986
[4]  
Lieb E., 2001, GRAD STUD MATH, V14
[5]  
Maeda M, 2013, DIFFER INTEGRAL EQU, V26, P731
[6]  
Masaki S., ARXIV11033083
[7]   ENERGY SOLUTION TO A SCHRODINGER-POISSON SYSTEM IN THE TWO-DIMENSIONAL WHOLE SPACE [J].
Masaki, Satoshi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) :2719-2731
[8]  
REED M., 1978, Methods of Modern Mathematical Physics, IV: Analysis of operators
[9]   The IVP for the Schrodinger-Poisson-Xα equation in one dimension [J].
Stimming, HP .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (08) :1169-1180
[10]  
Stubbe J., ARXIV08074059