The effect of the thermal vibration of graphene nanosheets on viscosity of nanofluid liquid argon containing graphene nanosheets

被引:14
作者
Loulijat, Hamid [1 ,2 ]
Koumina, Abdelaziz [1 ]
Zerradi, Hicham [2 ]
机构
[1] Cadi Ayyad Univ, Higher Normal Sch, Lab Phys Nanostruct, Marrakech 40000, Morocco
[2] Univ Hassan 2, Fac Sci Ben Msick URAC 10, Casablanca, Morocco
关键词
Nanofluids; Diffusion coefficient; Viscosity; Molecular dynamics simulation; Graphene nanosheets; Liquid argon; MOLECULAR-DYNAMICS SIMULATIONS; WATER-BASED NANOFLUIDS; HEAT-TRANSFER; TRANSPORT-COEFFICIENTS; RHEOLOGICAL PROPERTIES; CONDUCTIVITY; TEMPERATURE; FLOW; AR; CONVECTION;
D O I
10.1016/j.molliq.2018.12.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The impact of the thermal vibration of graphene nanosheets on viscosity and diffusion coefficient of nanofluid liquid argon containing graphene nanosheets are investigated by means the molecular dynamics simulation (MDS) combined with Green-Kubo formalism and the Einstein's formula respectively, and the hybrid BNC Tersoff potential is used to describe the interactions inter-atomic in graphene nanosheet. The numerical calculations of viscosity and diffusion coefficient are executed in the temperature range of 84-92 K and for graphene nanosheets volume fractions which are 3.93 vol%, 5.01 vol%, 6.88 vol% and 9.74 vol%. Firstly, the molecular dynamics code, the Green-Kubo framework and Einstein's formula are confirmed by comparing the viscosity and diffusion coefficient of argon liquid, with those calculated by preceding numerical simulations (MDS) and experimental studies. The results have indicated that the shear viscosity increases and the diffusion coefficient decreases when the graphene nanosheets volume fraction increases. Furthermore, the thermal vibration of graphene nanosheet has been considered among the responsible mechanisms to be the origin of enhanced shear viscosity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:936 / 946
页数:11
相关论文
共 54 条
[21]   Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation [J].
Lee, S. L. ;
Saidur, R. ;
Sabri, M. F. M. ;
Min, T. K. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2016, 69 (09) :996-1013
[22]   Molecular dynamic simulation: Studying the effects of Brownian motion and induced micro-convection in nanofluids [J].
Lee, S. L. ;
Saidur, R. ;
Sabri, M. F. M. ;
Min, T. K. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2016, 69 (06) :643-658
[23]   Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States [J].
Lee, S. L. ;
Saidur, R. ;
Sabri, M. F. M. ;
Min, T. K. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2015, 68 (04) :432-453
[24]   Critical phenomena in gases - I [J].
Lennard-Jones, JE ;
Devonshire, AF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 163 (A912) :0053-0070
[25]  
Lindsay L, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205441
[26]   Thermophysical and tribological properties of dispersions based on graphene and a trimethylolpropane trioleate oil [J].
Lineira del Rio, Jose M. ;
Guimarey, Maria J. G. ;
Comunas, Maria J. P. ;
Lopez, Enriqueta R. ;
Amigo, Alfredo ;
Fernandez, Josefa .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 268 :854-866
[27]   Thermal Vibrations of Single-Layered Graphene Sheets by Molecular Dynamics [J].
Liu, Rumeng ;
Wang, Lifeng .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) :1059-1062
[28]   Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids [J].
Lou, Zhaoyang ;
Yang, Mingli .
COMPUTERS & FLUIDS, 2015, 117 :17-23
[29]   The behavior of the thermal conductivity near the melting temperature of copper nanoparticle [J].
Loulijat, Hamid ;
Zerradi, Hicham ;
Mizani, Soufiya ;
Achhal, El Mehdi ;
Dezairi, Aouatif ;
Ouaskit, Said .
JOURNAL OF MOLECULAR LIQUIDS, 2015, 211 :695-704
[30]   Effect of Morse potential as model of solid-solid inter-atomic interaction on the thermal conductivity of nanofluids [J].
Loulijat, Hamid ;
Zerradi, Hicham ;
Dezairi, Aouatif ;
Ouaskit, Said ;
Mizani, Soufiya ;
Rhayt, Fathi .
ADVANCED POWDER TECHNOLOGY, 2015, 26 (01) :180-187