RotatGAT: Learning Knowledge Graph Embedding with Translation Assumptions and Graph Attention Networks

被引:0
作者
Wang, Guangbin [1 ]
Ding, Yuxin [1 ]
Xie, Zhibin [1 ]
Ma, Yubin [1 ]
Zhou, Zihan [1 ]
Qian, Wen [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci, Shenzhen, Peoples R China
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
基金
中国国家自然科学基金;
关键词
Knowledge Graph Embedding; Graph Neural Network; Machine Learning; Graph Learning;
D O I
10.1109/IJCNN55064.2022.9892206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph Embedding (KGE) is to learn continuous vectors of entities and relations in the Knowledge Graph (KG). Inspired by the R-GCN model, we propose a novel embedding learning model named RotatGAT, which combines the RotatE model and the GAT model. The goal is to overcome the shortcomings of R-GCN, that has a relatively high computing complexity and cannot distinguish the importance of neighbors. We introduce the RotatE model into RotatGAT to represent the embeddings of heterogeneous entities and relations in KG. Considering RotatE cannot use the structure information to learn entities' embeddings, we introduce the GAT model to learn the importance of neighbors of an entity and aggregate the feature information of neighbors for graph embedding learning. The link prediction experiments show the overall performance of RotatGAT on four benchmark datasets outperforms existing state-of-the-art models.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Knowledge Graph Embedding via Graph Attenuated Attention Networks
    Wang, Rui
    Li, Bicheng
    Hu, Shengwei
    Du, Wenqian
    Zhang, Min
    IEEE ACCESS, 2020, 8 (5212-5224) : 5212 - 5224
  • [2] Learning graph attention-aware knowledge graph embedding
    Li, Chen
    Peng, Xutan
    Niu, Yuhang
    Zhang, Shanghang
    Peng, Hao
    Zhou, Chuan
    Li, Jianxin
    NEUROCOMPUTING, 2021, 461 : 516 - 529
  • [3] Learning high-order structural and attribute information by knowledge graph attention networks for enhancing knowledge graph embedding
    Liu, Wenqiang
    Cai, Hongyun
    Cheng, Xu
    Xie, Sifa
    Yu, Yipeng
    Dukehyzhang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [4] Learning knowledge graph embedding with a dual-attention embedding network
    Fang, Haichuan
    Wang, Youwei
    Tian, Zhen
    Ye, Yangdong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [5] DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention Network
    Wu, Junkang
    Shi, Wentao
    Cao, Xuezhi
    Chen, Jiawei
    Lei, Wenqiang
    Zhang, Fuzheng
    Wu, Wei
    He, Xiangnan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2140 - 2149
  • [6] Recalibration convolutional networks for learning interaction knowledge graph embedding
    Li, Zhifei
    Liu, Hai
    Zhang, Zhaoli
    Liu, Tingting
    Shu, Jiangbo
    NEUROCOMPUTING, 2021, 427 : 118 - 130
  • [7] Generalized Translation-Based Embedding of Knowledge Graph
    Ebisu, Takuma
    Ichise, Ryutaro
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (05) : 941 - 951
  • [8] HARPA: hierarchical attention with relation paths for knowledge graph embedding adversarial learning
    Naixin Zhang
    Jinmeng Wang
    Jieyue He
    Data Mining and Knowledge Discovery, 2023, 37 : 521 - 551
  • [9] HARPA: hierarchical attention with relation paths for knowledge graph embedding adversarial learning
    Zhang, Naixin
    Wang, Jinmeng
    He, Jieyue
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 521 - 551
  • [10] Learning Embedding for Knowledge Graph Completion with Hypernetwork
    Le, Thanh
    Nguyen, Duy
    Le, Bac
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 16 - 28