Assessing Relative Bioactivity of Chemical Substances Using Quantitative Molecular Network Topology Analysis

被引:6
作者
Edberg, Anna [4 ]
Soeria-Atmadja, Daniel [5 ]
Laurila, Jonas Bergman [6 ]
Johansson, Fredrik [6 ]
Gustafsson, Mats G. [1 ,2 ]
Hammerling, Ulf [3 ]
机构
[1] Uppsala Univ, Dept Med Sci, Div Canc Pharmacol & Computat Med, SE-75185 Uppsala, Sweden
[2] Uppsala Acad Hosp, SE-75185 Uppsala, Sweden
[3] Natl Food Agcy, Dept Risk Benefit Assessment, SE-75126 Uppsala, Sweden
[4] Natl Food Agcy, Div Food Data, SE-75126 Uppsala, Sweden
[5] AstraZeneca Res & Dev, Div R&D Informat, SE-15185 Sodertalje, Sweden
[6] Natl Food Agcy, Div Informat Technol, SE-75126 Uppsala, Sweden
关键词
PROTEIN-PROTEIN INTERACTION; ENDOCRINE-DISRUPTING CHEMICALS; ESTROGEN-RECEPTOR; SYSTEMS BIOLOGY; BISPHENOL-A; ENVIRONMENTAL CHEMICALS; PATHWAY DATABASES; CONNECTIVITY MAP; DRUG DISCOVERY; GLOBAL VIEW;
D O I
10.1021/ci200429f
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Structurally different chemical substances may cause similar systemic effects in mammalian cells. It is therefore necessary to go beyond structural comparisons to quantify similarity in terms of their bioactivities. In this work, we introduce a generic methodology to achieve this on the basis of Network Biology principles and using publicly available molecular network topology information. An implementation of this method, denoted QuantMap, is outlined and applied to antidiabetic drugs, NSAIDs, 17 beta-estradiol, and 12 substances known to disrupt estrogenic pathways. The similarity of any pair of compounds is derived from topological comparison of intracellular protein networks, directly and indirectly associated with the respective query chemicals, via a straightforward pairwise comparison of ranked proteins. Although output derived from straightforward chemical/structural similarity analysis provided some guidance on bioactivity, QuantMap produced substance interrelationships that align well with reports on their respective perturbation properties. We believe that QuantMap has potential to provide substantial assistance to drug repositioning, pharmacology evaluation, and toxicology risk assessment.
引用
收藏
页码:1238 / 1249
页数:12
相关论文
共 99 条
[1]   Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks [J].
Audouze, Karine ;
Juncker, Agnieszka Sierakowska ;
Roque, Francisco J. S. S. A. ;
Krysiak-Baltyn, Konrad ;
Weinhold, Nils ;
Taboureau, Olivier ;
Jensen, Thomas Skot ;
Brunak, Soren .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (05) :1-11
[2]   Dietary phytoestrogens: Potential selective estrogen enzyme modulators? [J].
Basly, JP ;
Lavier, MCC .
PLANTA MEDICA, 2005, 71 (04) :287-294
[3]   Pathway databases and tools for their exploitation: benefits, current limitations and challenges [J].
Bauer-Mehren, Anna ;
Furlong, Laura I. ;
Sanz, Ferran .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[4]   Biological complexity and drug discovery: a practical systems biology approach [J].
Berg, EL ;
Kunkel, EJ ;
Hytopoulos, E .
IEE PROCEEDINGS SYSTEMS BIOLOGY, 2005, 152 (04) :201-206
[5]   Network analyses in systems pharmacology [J].
Berger, Seth I. ;
Iyengar, Ravi .
BIOINFORMATICS, 2009, 25 (19) :2466-2472
[6]   Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds [J].
Boehme, Kathleen ;
Simon, Stephanie ;
Mueller, Stefan O. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2009, 236 (01) :85-96
[7]   Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review [J].
Bonefeld-Jorgensen, Eva C. ;
Long, Manhai ;
Hofmeister, Marlene V. ;
Vinggaard, Anne Marie .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2007, 115 :69-76
[8]   NeAT:: a toolbox for the analysis of biological networks, clusters, classes and pathways [J].
Brohee, Sylvain ;
Faust, Karoline ;
Lima-Mendez, Gipsi ;
Sand, Olivier ;
Janky, Rekin's ;
Vanderstocken, Gilles ;
Deville, Yves ;
van Helden, Jacques .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W444-W451
[9]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[10]   Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data [J].
Chen, Bin ;
Dong, Xiao ;
Jiao, Dazhi ;
Wang, Huijun ;
Zhu, Qian ;
Ding, Ying ;
Wild, David J. .
BMC BIOINFORMATICS, 2010, 11