Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves

被引:53
|
作者
Zhang, Xinhua [1 ]
Teixeira da Silva, Jaime A. [2 ]
Niu, Meiyun [1 ]
Li, Mingzhi [3 ]
He, Chunmei [1 ]
Zhao, Jinhui [1 ]
Zeng, Songjun [1 ]
Duan, Jun [1 ]
Ma, Guohua [1 ]
机构
[1] Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou, Guangdong, Peoples R China
[2] POB 7,Miki Cho PO,Ikenobe 3011-2, Miki, Kagawa 7610799, Japan
[3] Genepioneer Biotechnol Co Ltd, Nanjing 210014, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
RNA-SEQ DATA; LOW-TEMPERATURE; FUNCTIONAL-CHARACTERIZATION; SUPEROXIDE-DISMUTASE; SIGNAL-TRANSDUCTION; FREEZING TOLERANCE; GENE-EXPRESSION; CBF REGULON; SANDALWOOD; PATHWAY;
D O I
10.1038/srep42165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 degrees C for 0-48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves
    Xinhua Zhang
    Jaime A. Teixeira da Silva
    Meiyun Niu
    Mingzhi Li
    Chunmei He
    Jinhui Zhao
    Songjun Zeng
    Jun Duan
    Guohua Ma
    Scientific Reports, 7
  • [2] Transcriptomic and Physiological Analyses Reveal the Dynamic Response to Salinity Stress of the Garden Asparagus (Asparagus officinalis L.)
    Xuhong Zhang
    Changzhi Han
    Yanpo Cao
    Plant Molecular Biology Reporter, 2020, 38 : 613 - 627
  • [3] Transcriptomic and Physiological Analyses Reveal the Dynamic Response to Salinity Stress of the Garden Asparagus (Asparagus officinalis L.)
    Zhang, Xuhong
    Han, Changzhi
    Cao, Yanpo
    PLANT MOLECULAR BIOLOGY REPORTER, 2020, 38 (04) : 613 - 627
  • [4] Integrated comparative physiological and transcriptomic analyses of Elymus sibiricus L. reveal the similarities and differences in the molecular mechanisms in response to drought and cold stress
    Li, Xinrui
    Chen, Lili
    Li, Daxu
    You, Minghong
    Li, Yingzhu
    Yan, Lijun
    Yan, Jiajun
    Gou, Wenlong
    Chang, Dan
    Ma, Xiao
    Bai, Shiqie
    Peng, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 219
  • [5] Integrative physiological, critical plant endogenous hormones, and transcriptomic analyses reveal the difenoconazole stress response mechanism in wheat (Triticum aestivum L.)
    Li, Jingchong
    Tian, Zhixiang
    Han, Aohui
    Li, Jingkun
    Luo, Aodi
    Liu, Runqiang
    Zhang, Zhiyong
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2023, 197
  • [6] Physiological, transcriptomic and metabolomic analyses reveal that exogenous arginine alleviate the response of Sorghum bicolor L. to cadmium stress
    Ye, Lvlan
    Yu, Junxing
    Zhang, Xingyu
    Yu, Feng
    Zeng, Tuo
    Gu, Lei
    Zhu, Bin
    Wang, Hongcheng
    Du, Xuye
    Industrial Crops and Products, 2025, 229
  • [7] Physiological variation in seeds of provenances of sandal (Santalum album L.)
    Ramalakshmi, S
    Rangaswamy, CR
    SANDAL AND ITS PRODUCTS, 1998, (84): : 121 - 122
  • [8] Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress
    Xu, Bo
    Wang, Yingzhe
    Zhang, Shichao
    Guo, Qiang
    Jin, Yan
    Chen, Jingjing
    Gao, Yunhang
    Ma, Hongxia
    PLOS ONE, 2017, 12 (04):
  • [9] Transcriptomic and physiological analyses of Symphytum officinale L. in response to multiple heavy metal stress
    Xu, Yi-fan
    Chen, Da-wei
    Ma, Jing
    Gao, Ruo-chun
    Bai, Jie
    Hou, Qin-zheng
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 277
  • [10] Physiological and transcriptomic analyses reveal novel insights into the cultivar-specific response to alkaline stress in alfalfa (Medicago sativa L.)
    Wei, Tian-Jiao
    Li, Guang
    Wang, Ming-Ming
    Jin, Yang-Yang
    Zhang, Guo-Hui
    Liu, Miao
    Yang, Hao-Yu
    Jiang, Chang-Jie
    Liang, Zheng-Wei
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2021, 228