Randic energy of specific graphs

被引:15
作者
Alikhani, Saeid [1 ]
Ghanbari, Nima [1 ]
机构
[1] Yazd Univ, Dept Math, Yazd 89195741, Iran
关键词
Randic matrix; Randic energy; Randic characteristic polynomial; Eigenvalues; UPPER-BOUNDS; TRICYCLIC GRAPHS; UNICYCLIC GRAPHS; MATCHING ENERGY; MAXIMAL ENERGY; CONJECTURE; SPREAD;
D O I
10.1016/j.amc.2015.07.112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with vertex set V (G) = {v(1), v(2,) ... , v(n)}. The Randic matrix of G, denoted by R(G), is defined as the n x n matrix whose (i, j)-entry is (d(i)d(j))(-1/2) if v(i) and v(j) are adjacent and 0 for another cases. Let the eigenvalues of the Randic matrix R(G) be rho(1) >= rho(2) >= ... >= rho(n) which are the roots of the Randic characteristic polynomial Pi(n)(i=1) (rho rho(i)). The Randic energy RE of G is the sum of absolute values of the eigenvalues of R(G). In this paper, we compute the Randic characteristic polynomial and the RandiC energy for specific graphs. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:722 / 730
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 2009, Applications of Graph Spectra
[2]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[3]  
Bapat R.B., 2004, Bull kerala math. Assso, V1, P129
[4]  
Bozkurt SB, 2014, MATCH-COMMUN MATH CO, V72, P215
[5]  
Bozkurt SB, 2013, MATCH-COMMUN MATH CO, V70, P143
[6]  
Bozkurt SB, 2013, MATCH-COMMUN MATH CO, V70, P669
[7]  
Chen L, 2015, MATCH-COMMUN MATH CO, V73, P105
[8]  
Cvetkovic D.M., 1980, SPECTRA GRAPH THEORY
[9]  
Das KC, 2014, MATCH-COMMUN MATH CO, V72, P227
[10]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P689