Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: A site-directed spin-labeling study

被引:105
作者
Altenbach, C
Cai, KW
Khorana, HG
Hubbell, WL
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] Univ Calif Los Angeles, Jules Stein Eye Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Biochem & Chem, Los Angeles, CA 90095 USA
关键词
D O I
10.1021/bi9900121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sixteen single-cysteine substitution mutants of rhodopsin were prepared in the sequence 306-321 which begins in transmembrane helix VII and ends at the palmitoylation sites at 322C and 323C. The substituted cysteine residues were modified with a selective reagent to generate a nitroxide side chain, and the electron paramagnetic resonance spectrum of each spin-labeled mutant was analyzed in terms of residue accessibility and mobility. The periodic behavior of these parameters along the sequence indicated that residues 306-314 were in a regular ct-helical conformation representing the end of helix VII. This helix apparently extends about 1.5 turns above the surface of the membrane, with one face in strong tertiary interaction with the core of the protein. For the segment 315-321, substituted cysteine residues at 317, 318, 320, and 321 had low reactivity with the spin-label reagent. This segment has the most extensive tertiary interactions yet observed in the rhodopsin extra-membrane sequences at the cytoplasmic surface. Previous studies showed the spontaneous formation of a disulfide bond between cysteine residues at 65 and 316. This result indicates that at least some of the tertiary contacts made in the 315-321 segment are with the sequence connecting transmembrane helices I and II. Photoactivation of rhodopsin produces changes in structure detected by spin labels at 306, 313, and 316. The changes at 313 can be accounted for by movements in the adjacent helix VI.
引用
收藏
页码:7931 / 7937
页数:7
相关论文
共 44 条
[1]   Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Yang, K ;
Farrens, DL ;
Farahbakhsh, ZT ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1996, 35 (38) :12470-12478
[2]   Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Hwa, J ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7945-7949
[3]   A COLLISION GRADIENT-METHOD TO DETERMINE THE IMMERSION DEPTH OF NITROXIDES IN LIPID BILAYERS - APPLICATION TO SPIN-LABELED MUTANTS OF BACTERIORHODOPSIN [J].
ALTENBACH, C ;
GREENHALGH, DA ;
KHORANA, HG ;
HUBBELL, WL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1667-1671
[4]   STRUCTURAL STUDIES ON TRANSMEMBRANE PROTEINS .2. SPIN LABELING OF BACTERIORHODOPSIN MUTANTS AT UNIQUE CYSTEINES [J].
ALTENBACH, C ;
FLITSCH, SL ;
KHORANA, HG ;
HUBBELL, WL .
BIOCHEMISTRY, 1989, 28 (19) :7806-7812
[5]   An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors [J].
Baldwin, JM ;
Schertler, GFX ;
Unger, VM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :144-164
[6]   Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: Sulfhydryl reactivity and transducin activation reveal a tertiary structure [J].
Cai, KW ;
Klein-Seetharaman, J ;
Farrens, D ;
Zhang, C ;
Altenbach, C ;
Hubbell, WL ;
Khorana, HG .
BIOCHEMISTRY, 1999, 38 (25) :7925-7930
[7]   Structure and function in rhodopsin: Topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops [J].
Cai, KW ;
Langen, R ;
Hubbell, WL ;
Khorana, HG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14267-14272
[8]   MECHANISM OF ACTIVATION AND INACTIVATION OF OPSIN - ROLE OF GLU(113) AND LYS(296) [J].
COHEN, GB ;
OPRIAN, DD ;
ROBINSON, PR .
BIOCHEMISTRY, 1992, 31 (50) :12592-12601
[9]   CHARACTERIZATION OF RHODOPSIN MUTANTS THAT BIND TRANSDUCIN BUT FAIL TO INDUCE GTP NUCLEOTIDE UPTAKE - CLASSIFICATION OF MUTANT PIGMENTS BY FLUORESCENCE, NUCLEOTIDE RELEASE, AND FLASH-INDUCED LIGHT-SCATTERING ASSAYS [J].
ERNST, OP ;
HOFMANN, KP ;
SAKMAR, TP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (18) :10580-10586
[10]   MAPPING LIGHT-DEPENDENT STRUCTURAL-CHANGES IN THE CYTOPLASMIC LOOP CONNECTING HELIX-C AND HELIX-D IN RHODOPSIN - A SITE-DIRECTED SPIN-LABELING STUDY [J].
FARAHBAKHSH, ZT ;
RIDGE, KD ;
KHORANA, HG ;
HUBBELL, WL .
BIOCHEMISTRY, 1995, 34 (27) :8812-8819