A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium

被引:74
作者
Ren, Shuili [2 ]
Panahi, Shirin [3 ]
Rajagopal, Karthikeyan [4 ,5 ]
Akgul, Akif [6 ]
Viet-Thanh Pham [1 ]
Jafari, Sajad [3 ]
机构
[1] Ton Duc Thang Univ, Fac Elect & Elect Engn, Modeling Evolutionary Algorithms Simulat & Artifi, Ho Chi Minh City, Vietnam
[2] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[3] Amirkabir Univ Technol, Biomed Engn Dept, Tehran 158754413, Iran
[4] Papua New Guinea Univ Technol, Ctr Nonlinear Dynam, Lae, Papua N Guinea
[5] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[6] Sakarya Univ, Fac Technol, Dept Elect & Elect Engn, Sakarya, Turkey
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2018年 / 73卷 / 03期
关键词
Chaotic Flows; Equilibrium; Hidden Attractors; FRACTIONAL-ORDER SYSTEMS; DIFFERENTIAL-EQUATIONS; HYPERCHAOTIC SYSTEM; TIME-DELAY; IMPLEMENTATION; CIRCUIT; SYNCHRONIZATION; MULTISTABILITY; APPROXIMATION; REALIZATION;
D O I
10.1515/zna-2017-0409
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 73 条
[1]  
Acho L., 2017, Proceedings of the IASTED International Conference on Modeling, Identification and Control (MIC 2017), P147, DOI 10.2316/P.2017.848-001
[2]   A REVIEW OF THE DECOMPOSITION METHOD AND SOME RECENT RESULTS FOR NONLINEAR EQUATIONS [J].
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1990, 13 (07) :17-43
[3]   Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory [J].
Aghababa, Mohammad Pourmahmood .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02)
[4]  
[Anonymous], 1965, Sov. Math. Doklady
[5]  
[Anonymous], 2017, INT J BIFURCAT CHAOS, DOI DOI 10.1142/S0218127417500973
[6]  
[Anonymous], 2000, Int. J. Chaos Theory Appl.
[7]  
Assi A.H., 2011, ENG ED RES USING MAT, P19
[8]   Hidden extreme multistability in memristive hyperchaotic system [J].
Bao, B. C. ;
Bao, H. ;
Wang, N. ;
Chen, M. ;
Xu, Q. .
CHAOS SOLITONS & FRACTALS, 2017, 94 :102-111
[9]   Extreme multistability in a memristive circuit [J].
Bao, Bo-Cheng ;
Xu, Quan ;
Bao, Han ;
Chen, Mo .
ELECTRONICS LETTERS, 2016, 52 (12) :1008-1009
[10]   Coexisting infinitely many attractors in active band-pass filter-based memristive circuit [J].
Bao, Bocheng ;
Jiang, Tao ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan ;
Hu, Yihua .
NONLINEAR DYNAMICS, 2016, 86 (03) :1711-1723