Statistically monotonic and statistically bounded sequences of fuzzy numbers

被引:38
作者
Aytar, S [1 ]
Pehlivan, S [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
fuzzy number; statistically convergent sequence of fuzzy numbers; statistical boundedness; statistical monotonicity; natural density;
D O I
10.1016/j.ins.2005.03.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the statistical monotonicity and boundedness of a sequence of fuzzy numbers. We also derive the analogue of monotone convergence theorem and prove the decomposition theorems for this type of sequences. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 744
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2000, KOREAN J COMPUT APPL, DOI DOI 10.1007/BF03009937
[2]   Statistical limit points of sequences of fuzzy numbers [J].
Aytar, S .
INFORMATION SCIENCES, 2004, 165 (1-2) :129-138
[3]  
Fast H., 1951, Colloq. Math, V2, P241, DOI [10.4064/cm-2-3-4-241-244, DOI 10.4064/CM-2-3-4-241-244]
[4]   DENSITIES AND SUMMABILITY [J].
FREEDMAN, AR ;
SEMBER, JJ .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 95 (02) :293-305
[5]   STATISTICAL LIMIT POINTS [J].
FRIDY, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1187-1192
[6]  
GUANGQUAN Z, 1988, BUSEFAL, V34, P54
[7]  
Kaufmann A, 1984, INTRO FUZZY ARITHMET
[8]   Statistical cluster points and turnpike theorem in nonconvex problems [J].
Mamedov, MA ;
Pehlivan, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) :686-693
[9]  
Matloka M., 1986, BUSEFAL, V28, P28
[10]  
Miller H., 2004, Glasnik Matematicki, Serija III, V39, P101, DOI 10.3336/gm.39.1.09