Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases

被引:35
作者
Malinczak, Carrie-Anne [1 ]
Lukacs, Nicholas W. [1 ,2 ]
Fonseca, Wendy [1 ]
机构
[1] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mary H Weiser Food Allergy Ctr, Ann Arbor, MI 48109 USA
来源
VIRUSES-BASEL | 2020年 / 12卷 / 05期
关键词
early-life RSV; long-term alterations; trained immunity; epigenetics; asthma; THYMIC STROMAL LYMPHOPOIETIN; PLASMACYTOID DENDRITIC CELLS; INNATE LYMPHOID-CELLS; RSV BRONCHIOLITIS; PALIVIZUMAB PROPHYLAXIS; NONSTRUCTURAL PROTEINS; EPIGENETIC CONTROL; MUCOUS METAPLASIA; VIRAL-INFECTION; MUCOSAL SITES;
D O I
10.3390/v12050505
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Respiratory syncytial virus (RSV) is often the first clinically relevant pathogen encountered in life, with nearly all children infected by two years of age. Many studies have also linked early-life severe respiratory viral infection with more pathogenic immune responses later in life that lead to pulmonary diseases like childhood asthma. This phenomenon is thought to occur through long-term immune system alterations following early-life respiratory viral infection and may include local responses such as unresolved inflammation and/or direct structural or developmental modifications within the lung. Furthermore, systemic responses that could impact the bone marrow progenitors may be a significant cause of long-term alterations, through inflammatory mediators and shifts in metabolic profiles. Among these alterations may be changes in transcriptional and epigenetic programs that drive persistent modifications throughout life, leaving the immune system poised toward pathogenic responses upon secondary insult. This review will focus on early-life severe RSV infection and long-term alterations. Understanding these mechanisms will not only lead to better treatment options to limit initial RSV infection severity but also protect against the development of childhood asthma linked to severe respiratory viral infections.
引用
收藏
页数:17
相关论文
共 123 条
[21]   The use of a neonatal mouse model to study respiratory syncytial virus infections [J].
Cormier, Stephania A. ;
You, Dahui ;
Honnegowda, Srinivasa .
EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2010, 8 (12) :1371-1380
[22]   Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung [J].
de Kleer, Isme M. ;
Kool, Mirjam ;
de Bruijn, Marjolein J. W. ;
Willart, Monique ;
van Moorleghem, Justine ;
Schuijs, Martijn J. ;
Plantinga, Maud ;
Beyaert, Rudi ;
Hams, Emily ;
Fallon, Padraic G. ;
Hammad, Hamida ;
Hendriks, Rudi W. ;
Lambrecht, Bart N. .
IMMUNITY, 2016, 45 (06) :1285-1298
[23]   The histone demethylase inhibitor GSK-J4 limits inflammation through the induction of a tolerogenic phenotype on DCs [J].
Donas, Cristian ;
Carrasco, Macarena ;
Fritz, Macarena ;
Prado, Carolina ;
Tejon, Gabriela ;
Osorio-Barrios, Francisco ;
Manriquez, Valeria ;
Reyes, Paz ;
Pacheco, Rodrigo ;
Rosa Bono, Maria ;
Loyola, Alejandra ;
Rosemblatt, Mario .
JOURNAL OF AUTOIMMUNITY, 2016, 75 :105-117
[24]   Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells [J].
Elesela, Srikanth ;
Morris, Susan B. ;
Narayanan, Samanthi ;
Kumar, Surinder ;
Lombard, David B. ;
Lukacs, Nicholas W. .
PLOS PATHOGENS, 2020, 16 (02)
[25]   A Randomized Controlled Trial of Motavizumab Versus Palivizumab for the Prophylaxis of Serious Respiratory Syncytial Virus Disease in Children With Hemodynamically Significant Congenital Heart Disease [J].
Feltes, Timothy F. ;
Sondheimer, Henry M. ;
Tulloh, Robert M. R. ;
Harris, Brian S. ;
Jensen, Kathryn M. ;
Losonsky, Genevieve A. ;
Griffin, M. Pamela .
PEDIATRIC RESEARCH, 2011, 70 (02) :186-191
[26]   Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation [J].
Fonseca, W. ;
Lucey, K. ;
Jang, S. ;
Fujimura, K. E. ;
Rasky, A. ;
Ting, H-A ;
Petersen, J. ;
Johnson, C. C. ;
Boushey, H. A. ;
Zoratti, E. ;
Ownby, D. R. ;
Levine, A. M. ;
Bobbit, K. R. ;
Lynch, S. V. ;
Lukacs, N. W. .
MUCOSAL IMMUNOLOGY, 2017, 10 (06) :1569-1580
[27]   Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation [J].
Fonseca, Wendy ;
Malinczak, Carrie-Anne ;
Schuler, Charles F. ;
Best, Shannon K. K. ;
Rasky, Andrew J. ;
Morris, Susan B. ;
Cui, Tracy X. ;
Popova, Antonia P. ;
Lukacs, Nicholas W. .
MUCOSAL IMMUNOLOGY, 2020, 13 (04) :691-701
[28]   Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome [J].
Fonseca, Wendy ;
Lukacs, Nicholas W. ;
Ptaschinski, Catherine .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[29]   Gene-specific control of inflammation by TLR-induced chromatin modifications [J].
Foster, Simmie L. ;
Hargreaves, Diana C. ;
Medzhitov, Ruslan .
NATURE, 2007, 447 (7147) :972-U4
[30]   Influence of Dendritic Cells on Viral Pathogenicity [J].
Freer, Giulia ;
Matteucci, Donatella .
PLOS PATHOGENS, 2009, 5 (07)