An efficient algorithm to solve the small sample size problem for LDA

被引:53
作者
Zheng, WM [1 ]
Zhao, L [1 ]
Zou, CR [1 ]
机构
[1] SE Univ, Engn Res Ctr Informat Proc & Applicat, Jiangsu 210096, Peoples R China
关键词
linear discriminant analysis; null space; face recognition;
D O I
10.1016/j.patcog.2003.02.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an efficient algorithm to solve the most discriminant vectors of LDA for high-dimensional data set. The experiments on ORL face database confirm the effectiveness of the proposed method. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1077 / 1079
页数:3
相关论文
共 5 条
  • [1] A new LDA-based face recognition system which can solve the small sample size problem
    Chen, LF
    Liao, HYM
    Ko, MT
    Lin, JC
    Yu, GJ
    [J]. PATTERN RECOGNITION, 2000, 33 (10) : 1713 - 1726
  • [2] Face recognition based on the uncorrelated discriminant transformation
    Jin, Z
    Yang, JY
    Hu, ZS
    Lou, Z
    [J]. PATTERN RECOGNITION, 2001, 34 (07) : 1405 - 1416
  • [3] Ke Liu, 1992, International Journal of Pattern Recognition and Artificial Intelligence, V6, P817, DOI 10.1142/S0218001492000412
  • [4] [束婷婷 Shu Tingting], 2002, [南京理工大学学报. 自然科学版, Journal of nanjing university of science and technology], V26, P290
  • [5] A direct LDA algorithm for high-dimensional data - with application to face recognition
    Yu, H
    Yang, H
    [J]. PATTERN RECOGNITION, 2001, 34 (10) : 2067 - 2070