Minimum degree, edge-connectivity and radius

被引:7
作者
Wu, Baoyindureng [1 ]
An, Xinhui [1 ]
Liu, Guojie [1 ]
Yan, Guiying [2 ]
Liu, Xiaoping [3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Xinjiang Polytech Coll, Urumqi 830000, Xinjiang, Peoples R China
关键词
Edge-connectivity; Radius; Minimum degree; GRAPHS; DISTANCE; DIAMETER;
D O I
10.1007/s10878-012-9479-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G be a connected graph on na parts per thousand yen4 vertices with minimum degree delta and radius r. Then , with equality if and only if one of the following holds: (1) G is K-5, (2) G congruent to K-n \ M, where M is a perfect matching, if n is even, (3) delta = n - 3 and Delta <= n - 2, if n is odd. This solves a conjecture on the product of the edge-connectivity and radius of a graph, which was posed by Sedlar, Vukicevic, Aouchice, and Hansen.
引用
收藏
页码:585 / 591
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2001, Introduction to Graph Theory
[2]   Using minimum degree to bound average distance [J].
Beezer, RA ;
Riegsecker, JE ;
Smith, BA .
DISCRETE MATHEMATICS, 2001, 226 (1-3) :365-371
[3]   Diameter of 4-colourable graphs [J].
Czabarka, E. ;
Dankelmann, P. ;
Szekely, L. A. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1082-1089
[4]  
Dankelmann P, 2005, UTILITAS MATHEMATICA, V67, P205
[5]  
Dankelmann P, 2007, UTILITAS MATHEMATICA, V73, P207
[6]   Minimum size of a graph or digraph of given radius [J].
Dankelmann, Peter ;
Volkmann, Lutz .
INFORMATION PROCESSING LETTERS, 2009, 109 (16) :971-973
[7]  
Dlamini G, 2003, THESIS U NATAL DURBA
[8]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[9]   A CHARACTERIZATION OF RADIUS-CRITICAL GRAPHS [J].
FAJTLOWICZ, S .
JOURNAL OF GRAPH THEORY, 1988, 12 (04) :529-532
[10]  
He W., 1991, MATH APPL, V4, P28