Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms

被引:121
|
作者
Barraud, Nicolas [1 ,2 ]
Buson, Alberto [3 ]
Jarolimek, Wolfgang [3 ]
Rice, Scott A. [1 ,2 ,4 ,5 ]
机构
[1] Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW, Australia
[3] Pharmaxis Ltd, Frenchs Forest, NSW, Australia
[4] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 639798, Singapore
[5] Nanyang Technol Univ, Sch Biol Sci, Singapore 639798, Singapore
来源
PLOS ONE | 2013年 / 8卷 / 12期
基金
澳大利亚研究理事会;
关键词
DRY POWDER MANNITOL; NO-DONOR PRODRUGS; CYSTIC-FIBROSIS; INHALED MANNITOL; TOBRAMYCIN; CELLS; TOLERANCE; COLISTIN; DORMANCY; CULTURES;
D O I
10.1371/journal.pone.0084220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice
    Watters, Chase
    DeLeon, Katrina
    Trivedi, Urvish
    Griswold, John A.
    Lyte, Mark
    Hampel, Ken J.
    Wargo, Matthew J.
    Rumbaugh, Kendra P.
    MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2013, 202 (02) : 131 - 141
  • [22] The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms
    Billings, Nicole
    Millan, Maria Ramirez
    Caldara, Marina
    Rusconi, Roberto
    Tarasova, Yekaterina
    Stocker, Roman
    Ribbeck, Katharina
    PLOS PATHOGENS, 2013, 9 (08)
  • [23] The Role of PaFicT in Pseudomonas aeruginosa Persister Cell Formation
    Fogen, Dawson
    INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE, 2021, 10 (04) : 277 - 287
  • [24] Antibiotic treatment of Pseudomonas aeruginosa biofilms stimulates expression of the magnesium transporter gene mgtE
    Redelman, Carly V.
    Chakravarty, Shubham
    Anderson, Gregory G.
    MICROBIOLOGY-SGM, 2014, 160 : 165 - 178
  • [25] Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms
    Maiden, Michael M.
    Hunt, Alessandra M. Agostinho
    Zachos, Mitchell P.
    Gibson, Jacob A.
    Hurwitz, Martin E.
    Mulks, Martha H.
    Waters, Christopher M.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (06)
  • [26] Antimicrobial Resistance in Pseudomonas aeruginosa Biofilms
    Patel, Dhara
    Sen, Palash
    Hlaing, Yin
    Boadu, Michael
    Saadeh, Bassam
    Basu, Paramita
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2021, 15 (04) : 2520 - 2528
  • [27] Electroceutical Treatment of Pseudomonas aeruginosa Biofilms
    Dusane, Devendra H.
    Lochab, Varun
    Jones, Travis
    Peters, Casey W.
    Sindeldecker, Devin
    Das, Amitava
    Roy, Sashwati
    Sen, Chandan K.
    Subramaniam, Vish V.
    Wozniak, Daniel J.
    Prakash, Shaurya
    Stoodley, Paul
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [28] Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing Pseudomonas aeruginosa
    Muesken, Mathias
    Pawar, Vinay
    Schwebs, Timo
    Baehre, Heike
    Felgner, Sebastian
    Weiss, Siegfried
    Haeussler, Susanne
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (12)
  • [29] Pseudomonas aeruginosa biofilms in cystic fibrosis
    Hoiby, Niels
    Ciofu, Oana
    Bjarnsholt, Thomas
    FUTURE MICROBIOLOGY, 2010, 5 (11) : 1663 - 1674
  • [30] Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms
    Laura Chronopoulou
    Enea Gino Di Domenico
    Fiorentina Ascenzioni
    Cleofe Palocci
    Journal of Nanoparticle Research, 2016, 18