Diffusion MRI visualization

被引:13
|
作者
Schultz, Thomas [1 ,2 ]
Vilanova, Anna [3 ]
机构
[1] Bonn Aachen Int Ctr Informat Technol, Bonn, Germany
[2] Univ Bonn, Dept Comp Sci, Bonn, Germany
[3] Delft Univ Technol, Dept Elect Engn Math & Comp Sci EEMCS, Delft, Netherlands
关键词
diffusion MRI; diffusion tensor; tractography; visualization; WHITE-MATTER FIBERS; TENSOR MRI; TRACTOGRAPHY; BRAIN; UNCERTAINTY; CONNECTIVITY; ORIENTATION; TRACKING; TISSUES; DENSITY;
D O I
10.1002/nbm.3902
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Modern diffusion magnetic resonance imaging (dMRI) acquires intricate volume datasets and biological meaning can only be found in the relationship between its different measurements. Suitable strategies for visualizing these complicated data have been key to interpretation by physicians and neuroscientists, for drawing conclusions on brain connectivity and for quality control. This article provides an overview of visualization solutions that have been proposed to date, ranging from basic grayscale and color encodings to glyph representations and renderings of fiber tractography. A particular focus is on ongoing and possible future developments in dMRI visualization, including comparative, uncertainty, interactive and dense visualizations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fiberweb: Diffusion Visualization and Processing in the Browser
    Ledoux, Louis-Philippe
    Morency, Felix C.
    Cousineau, Martin
    Houde, Jean-Christophe
    Whittingstall, Kevin
    Descoteaux, Maxime
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [42] PCLR: Phase-Constrained Low-Rank Model for Compressive Diffusion-Weighted MRI
    Gao, Hao
    Li, Longchuan
    Zhang, Kai
    Zhou, Weifeng
    Hu, Xiaoping
    MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) : 1330 - 1341
  • [43] Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information
    Smith, Robert E.
    Tournier, Jacques-Donald
    Calamante, Fernando
    Connelly, Alan
    NEUROIMAGE, 2012, 62 (03) : 1924 - 1938
  • [44] Enforcing necessary non-negativity constraints for common diffusion MRI models using sum of squares programming
    Dela Haije, Tom
    Ozarslan, Evren
    Feragen, Aasa
    NEUROIMAGE, 2020, 209
  • [45] Constrained spherical deconvolution of nonspherically sampled diffusion MRI data
    Morez, Jan
    Sijbers, Jan
    Vanhevel, Floris
    Jeurissen, Ben
    HUMAN BRAIN MAPPING, 2021, 42 (02) : 521 - 538
  • [46] Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques
    Pannek, Kerstin
    Guzzetta, Andrea
    Colditz, Paul B.
    Rose, Stephen E.
    PEDIATRIC RADIOLOGY, 2012, 42 (10) : 1169 - 1182
  • [47] Axon diameter mapping in the presence of orientation dispersion with diffusion MRI
    Zhang, Hui
    Hubbard, Penny L.
    Parker, Geoff J. M.
    Alexander, Daniel C.
    NEUROIMAGE, 2011, 56 (03) : 1301 - 1315
  • [48] Gaining insight of fetal brain development with diffusion MRI and histology
    Huang, Hao
    Vasung, Lana
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2014, 32 : 11 - 22
  • [49] Structural and Diffusion MRI Analyses With Histological Observations in Patients With Lissencephaly
    Vasung, Lana
    Rezayev, Arthur
    Yun, Hyuk Jin
    Song, Jae W.
    van der Kouwe, Andre
    Stewart, Natalie
    Palani, Arthi
    Shiohama, Tadashi
    Chouinard-Decorte, Francois
    Levman, Jacob
    Takahashiu, Emi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [50] Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
    Jeurissen, Ben
    Tournier, Jacques-Donald
    Dhollander, Thijs
    Connelly, Alan
    Sijbers, Jan
    NEUROIMAGE, 2014, 103 : 411 - 426