Diffusion MRI visualization

被引:13
|
作者
Schultz, Thomas [1 ,2 ]
Vilanova, Anna [3 ]
机构
[1] Bonn Aachen Int Ctr Informat Technol, Bonn, Germany
[2] Univ Bonn, Dept Comp Sci, Bonn, Germany
[3] Delft Univ Technol, Dept Elect Engn Math & Comp Sci EEMCS, Delft, Netherlands
关键词
diffusion MRI; diffusion tensor; tractography; visualization; WHITE-MATTER FIBERS; TENSOR MRI; TRACTOGRAPHY; BRAIN; UNCERTAINTY; CONNECTIVITY; ORIENTATION; TRACKING; TISSUES; DENSITY;
D O I
10.1002/nbm.3902
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Modern diffusion magnetic resonance imaging (dMRI) acquires intricate volume datasets and biological meaning can only be found in the relationship between its different measurements. Suitable strategies for visualizing these complicated data have been key to interpretation by physicians and neuroscientists, for drawing conclusions on brain connectivity and for quality control. This article provides an overview of visualization solutions that have been proposed to date, ranging from basic grayscale and color encodings to glyph representations and renderings of fiber tractography. A particular focus is on ongoing and possible future developments in dMRI visualization, including comparative, uncertainty, interactive and dense visualizations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Progressive Approach for Uncertainty Visualization in Diffusion Tensor Imaging
    Siddiqui, Faizan
    Hollt, Thomas
    Vilanova, Anna
    COMPUTER GRAPHICS FORUM, 2021, 40 (03) : 411 - 422
  • [32] A browser-based tool for visualization and analysis of diffusion MRI data
    Yeatman, Jason D.
    Richie-Halford, Adam
    Smith, Josh K.
    Keshavan, Anisha
    Rokem, Ariel
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Image quality transfer and applications in diffusion MRI
    Alexander, Daniel C.
    Zikic, Darko
    Ghosh, Aurobrata
    Tanno, Ryutaro
    Wottschel, Viktor
    Zhang, Jiaying
    Kaden, Enrico
    Dyrby, Tim B.
    Sotiropoulos, Stamatios N.
    Zhang, Hui
    Criminisi, Antonio
    NEUROIMAGE, 2017, 152 : 283 - 298
  • [34] Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
    Thomas, Cibu
    Ye, Frank Q.
    Irfanoglu, M. Okan
    Modi, Pooja
    Saleem, Kadharbatcha S.
    Leopold, David A.
    Pierpaoli, Carlo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (46) : 16574 - 16579
  • [35] Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke
    Yeh, Fang-Cheng
    Tang, Pei-Fang
    Tseng, Wen-Yih Isaac
    NEUROIMAGE-CLINICAL, 2013, 2 : 912 - 921
  • [36] Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures
    Caiazzo, Giuseppina
    Fratello, Michele
    Di Nardo, Federica
    Trojsi, Francesca
    Tedeschi, Gioacchino
    Esposito, Fabrizio
    NEURORADIOLOGY, 2018, 60 (05) : 497 - 504
  • [37] Diffusion MRI in the heart
    Mekkaoui, Choukri
    Reese, Timothy G.
    Jackowski, Marcel P.
    Bhat, Himanshu
    Sosnovik, David E.
    NMR IN BIOMEDICINE, 2017, 30 (03)
  • [38] Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data
    Guo, Fenghua
    Leemans, Alexander
    Viergever, Max A.
    Dell'Accqua, Flavio
    De Luca, Alberto
    NEUROIMAGE, 2020, 218
  • [39] Imaging laminar structures in the gray matter with diffusion MRI
    Assaf, Yaniv
    NEUROIMAGE, 2019, 197 : 677 - 688
  • [40] Evaluating the Accuracy of Diffusion MRI Models in White Matter
    Rokem, Ariel
    Yeatman, Jason D.
    Pestilli, Franco
    Kay, Kendrick N.
    Mezer, Aviv
    van der Walt, Stefan
    Wandell, Brian A.
    PLOS ONE, 2015, 10 (04):