Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay

被引:35
|
作者
Abbas, Said [2 ]
Agarwal, Ravi P. [1 ,3 ]
Benchohra, Mouffak [4 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Saida, Math Lab, Saida 20000, Algeria
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[4] Univ Djillali Liabes Sidi Bel Abbes, Math Lab, Sidi Bel Abbes 22000, Algeria
关键词
Impulsive partial differential equations; Fractional order; Solution; Left-sided mixed Riemann-Liouville integral; Caputo fractional-order derivative; Variable times; Infinite delay; Fixed point; MOMENTS; SYSTEMS;
D O I
10.1016/j.nahs.2010.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the existence of solutions to impulsive partial functional differential equations with impulses at variable times and infinite delay, involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:818 / 829
页数:12
相关论文
共 50 条
  • [41] Impulsive differential equations with variable times
    Frigon, M
    ORegan, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (12) : 1913 - 1922
  • [42] On qualitative analysis of boundary value problem of variable order fractional delay differential equations
    Shah, Kamal
    Ali, Gauhar
    Ansari, Khursheed J.
    Abdeljawad, Thabet
    Meganathan, M.
    Abdalla, Bahaaeldin
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [43] On qualitative analysis of boundary value problem of variable order fractional delay differential equations
    Kamal Shah
    Gauhar Ali
    Khursheed J. Ansari
    Thabet Abdeljawad
    M. Meganathan
    Bahaaeldin Abdalla
    Boundary Value Problems, 2023
  • [44] LONG TIME BEHAVIOR OF FRACTIONAL IMPULSIVE STOCHASTIC DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
    Xu, Jiaohui
    Caraballo, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (06): : 2719 - 2743
  • [45] Existence of solutions for fractional impulsive neutral functional differential equations with infinite delay
    Liao, Jiawu
    Chen, Fulai
    Hu, Sanqing
    NEUROCOMPUTING, 2013, 122 : 156 - 162
  • [46] Impulsive fractional partial differential equations
    Guo, Tian Liang
    Zhang, KanJian
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 581 - 590
  • [47] EXISTENCE OF SOLUTIONS TO FRACTIONAL-ORDER IMPULSIVE HYPERBOLIC PARTIAL DIFFERENTIAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [48] NONLOCAL PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Repin, O. A.
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (01): : 78 - 86
  • [49] Stability of impulsive infinite delay differential equations
    Zhang, Yu
    Sun, Jitao
    APPLIED MATHEMATICS LETTERS, 2006, 19 (10) : 1100 - 1106
  • [50] IMPULSIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER WITH VARIABLE MOMENTS
    Ergoren, H.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 68 (09) : 1340 - 1352