Communicating with chaos using two-dimensional symbolic dynamics

被引:40
作者
Lai, YC [1 ]
Bollt, E
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] USN Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00175-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for communication. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 21 条
[1]   Coding, channel capacity, and noise resistance in communicating with chaos [J].
Bollt, E ;
Lai, YC ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3787-3790
[2]   Encoding information in chemical chaos by controlling symbolic dynamics [J].
Bollt, EM ;
Dolnik, M .
PHYSICAL REVIEW E, 1997, 55 (06) :6404-6413
[3]   MARKOV PARITIONS FOR AXIOM-A DIFFEOMORPHISMS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) :725-&
[4]   Transforming signals with chaotic synchronization [J].
Carroll, TL ;
Heagy, JF ;
Pecora, LM .
PHYSICAL REVIEW E, 1996, 54 (05) :4676-4680
[5]   SYNCHRONIZING CHAOTIC SYSTEMS USING FILTERED SIGNALS [J].
CARROLL, TL .
PHYSICAL REVIEW E, 1994, 50 (04) :2580-2587
[6]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[7]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754
[8]   GENERATING PARTITIONS FOR THE DISSIPATIVE HENON MAP [J].
GRASSBERGER, P ;
KANTZ, H .
PHYSICS LETTERS A, 1985, 113 (05) :235-238
[9]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[10]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77