Integration and segregation of large-scale brain networks during short-term task automatization

被引:123
作者
Mohr, Holger [1 ]
Wolfensteller, Uta [1 ]
Betzel, Richard F. [2 ,3 ]
Misic, Bratislav [2 ,4 ]
Sporns, Olaf [2 ,5 ]
Richiardi, Jonas [6 ]
Ruge, Hannes [1 ]
机构
[1] Tech Univ Dresden, Dept Psychol, D-01069 Dresden, Germany
[2] Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN 47405 USA
[3] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[4] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ H3A 2B4, Canada
[5] Indiana Univ, Network Sci Inst, Bloomington, IN 47405 USA
[6] Univ Geneva, Dept Neurosci, Lab Neurol & Imaging Cognit, CH-1202 Geneva, Switzerland
关键词
FLEXIBLE COGNITIVE CONTROL; TEST-RETEST RELIABILITY; DEFAULT-MODE NETWORKS; RESTING-STATE; WORKING-MEMORY; EFFECTIVE CONNECTIVITY; PARIETAL CORTICES; SALIENCE NETWORK; FMRI; FRONTOPARIETAL;
D O I
10.1038/ncomms13217
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N = 70) with a control sample (N = 67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes.
引用
收藏
页数:12
相关论文
共 71 条
[1]   The role of default network deactivation in cognition and disease [J].
Anticevic, Alan ;
Cole, Michael W. ;
Murray, John D. ;
Corlett, Philip R. ;
Wang, Xiao-Jing ;
Krystal, John H. .
TRENDS IN COGNITIVE SCIENCES, 2012, 16 (12) :584-592
[2]   Learning-induced autonomy of sensorimotor systems [J].
Bassett, Danielle S. ;
Yang, Muzhi ;
Wymbs, Nicholas F. ;
Grafton, Scott T. .
NATURE NEUROSCIENCE, 2015, 18 (05) :744-+
[3]   Task-Based Core-Periphery Organization of Human Brain Dynamics [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Rombach, M. Puck ;
Porter, Mason A. ;
Mucha, Peter J. ;
Grafton, Scott T. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[4]   Dynamic reconfiguration of human brain networks during learning [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Porter, Mason A. ;
Mucha, Peter J. ;
Carlson, Jean M. ;
Grafton, Scott T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) :7641-7646
[5]   Understanding complexity in the human brain [J].
Bassett, Danielle S. ;
Gazzaniga, Michael S. .
TRENDS IN COGNITIVE SCIENCES, 2011, 15 (05) :200-209
[6]   Salience network integrity predicts default mode network function after traumatic brain injury [J].
Bonnelle, Valerie ;
Ham, Timothy E. ;
Leech, Robert ;
Kinnunen, Kirsi M. ;
Mehta, Mitul A. ;
Greenwood, Richard J. ;
Sharp, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (12) :4690-4695
[7]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[8]   Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure [J].
Bright, Molly G. ;
Murphy, Kevin .
NEUROIMAGE, 2015, 114 :158-169
[9]   Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory [J].
Brovelli, Andrea ;
Laksiri, Nadia ;
Nazarian, Bruno ;
Meunier, Martine ;
Boussaoud, Driss .
CEREBRAL CORTEX, 2008, 18 (07) :1485-1495
[10]   Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping [J].
Brovelli, Andrea ;
Chicharro, Daniel ;
Badier, Jean-Michel ;
Wang, Huifang ;
Jirsa, Viktor .
JOURNAL OF NEUROSCIENCE, 2015, 35 (37) :12643-12658