Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes

被引:14
|
作者
Ramadurai, Sivaramakrishnan [1 ]
Kohut, Ananiy [2 ,3 ]
Sarangi, Nirod Kumar [1 ]
Zholobko, Oksana [2 ]
Baulin, Vladimir A. [4 ]
Voronov, Andriy [2 ]
Keyes, Tia E. [1 ]
机构
[1] Dublin City Univ, Sch Chem Sci, Dublin 9, Ireland
[2] North Dakota State Univ, Dept Coatings & Polymer Mat, Fargo, ND 58105 USA
[3] Lviv Polytech Natl Univ, Dept Organ Chem, Vul S Bandery 12, UA-79013 Lvov, Ukraine
[4] Univ Rovira & Virgili, Dept Enginyeria Quim, Av Dels Paisos Catalans 26, Tarragona 43007, Spain
基金
爱尔兰科学基金会;
关键词
Microcaviry supported lipid bilayer (MSLB); Fluorescence lifetime correlation spectroscopy (FLCS); Electrochemical impedance spectroscopy (EIS); Amphiphilic invertible polymer micelles; Lipid probes; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC); Diffusion coefficient; Impedance; FLUORESCENCE CORRELATION SPECTROSCOPY; INVERTIBLE POLYMER; DIFFUSION; CELL;
D O I
10.1016/j.jcis.2019.01.093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Macromolecules of amphiphilic invertible polymers (AIPs) are capable of self-assembly into micellar assemblies of various morphologies in solvents of different polarities. The micellar assemblies in aqueous media are capable of encapsulating poorly aqueous soluble cargo and can undergo inverse conformational change and cargo release in contact with non-polar media, including potentially, cell membranes. Thus, invertible micellar assemblies have significant potential in drug delivery and related domains. However, to date there have been few investigations into their interactions with lipid membranes. Herein, we investigate the interactions of three recently developed AlPs of varying hydrophobicity/hydrophilicity balance with a highly fluidic microcavity supported 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer. We combined electrochemical impedance spectroscopy (EIS) with fluorescence correlation spectroscopy (FCS) to understand how the AIP micellar assemblies impacted bilayer permeability and fluidity respectively, across polymer concentrations above and below their critical micelle concentrations (cmcs). At concentration as above their cmcs, all of the AlPs explored increased permeability and decreased the fluidity of the lipid membrane. The extent of impact depended on the hydrophobicity of the AIP. PEG(600)-PTHF650 , the most hydrophobic of the polymers, synthesized from PEG (molecular weight 600 g/mol) and PTHF (molecular weight 650 g/mol) exerted the greatest influence on the bilayer's physical properties and fluorescence imaging and correlation data indicate that PEG(600)-PTHF650 micelles loaded with BODIPY probes adsorb and invert at the lipid membrane with release of cargo into the bilayer. This study should help inform future advancement of AIPs for membrane molecular delivery. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [21] PROTEIN-LIPID INTERACTIONS IN BILAYER MEMBRANES - LATTICE MODEL
    PINK, DA
    CHAPMAN, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) : 1542 - 1546
  • [22] Polysaccharide-supported planar bilayer lipid model membranes
    Baumgart, T
    Offenhäusser, A
    LANGMUIR, 2003, 19 (05) : 1730 - 1737
  • [23] Permeation of polystyrene nanoparticles across model lipid bilayer membranes
    Thake, Thomas H. F.
    Webb, Jennifer R.
    Nash, Anthony
    Rappoport, Joshua Z.
    Notman, Rebecca
    SOFT MATTER, 2013, 9 (43) : 10265 - 10274
  • [24] PERTURBATION OF THE LIPID BILAYER OF MODEL MEMBRANES BY SYNTHETIC SIGNAL PEPTIDES
    NAGARAJ, R
    JOSEPH, M
    REDDY, GL
    BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 903 (03) : 465 - 472
  • [25] Biotinylated lipid bilayer disks as model membranes for biosensor analyses
    Lundquist, Anna
    Hansen, Soren B.
    Nordstrom, Helena
    Danielson, U. Helena
    Edwards, Katarina
    ANALYTICAL BIOCHEMISTRY, 2010, 405 (02) : 153 - 159
  • [26] Model Lipid Membranes on a Tunable Polymer Cushion
    Smith, Hillary L.
    Jablin, Michael S.
    Vidyasagar, Ajay
    Saiz, Jessica
    Watkins, Erik
    Toomey, Ryan
    Hurd, Alan J.
    Majewski, Jaroslaw
    PHYSICAL REVIEW LETTERS, 2009, 102 (22)
  • [27] POLYMER-MODIFIED BILAYER LIPID-MEMBRANES - THE POLYPYRROLE LECITHIN SYSTEM
    JANAS, T
    KOTOWSKI, J
    TIEN, HT
    BIOELECTROCHEMISTRY AND BIOENERGETICS, 1988, 19 (03): : 405 - 412
  • [28] Membrane supported bilayer lipid membranes array: preparation, stability and ion-channel insertion
    Favero, G
    D'Annibale, A
    Campanella, L
    Santucci, R
    Ferri, T
    ANALYTICA CHIMICA ACTA, 2002, 460 (01) : 23 - 34
  • [29] Voltage-controlled insertion of single α-hemolysin and Mycobacterium smegmatis nanopores into lipid bilayer membranes
    Renner, Stephan
    Bessonov, Andrey
    Simmel, Friedrich C.
    APPLIED PHYSICS LETTERS, 2011, 98 (08)
  • [30] NON-BILAYER LIPID STRUCTURES IN MODEL AND BIOLOGICAL-MEMBRANES
    DEKRUIJFF, B
    CULLIS, PR
    VERKLEIJ, AJ
    TRENDS IN BIOCHEMICAL SCIENCES, 1980, 5 (03) : 79 - 81