Bandgap tuning in armchair MoS2 nanoribbon

被引:95
|
作者
Yue, Qu [1 ]
Chang, Shengli [1 ]
Kang, Jun [2 ]
Zhang, Xueao [1 ]
Shao, Zhengzheng [1 ]
Qin, Shiqiao [1 ]
Li, Jingbo [2 ]
机构
[1] Natl Univ Def Technol, Sch Sci, Changsha 410073, Hunan, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattice & Microstruct, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRIC-FIELD;
D O I
10.1088/0953-8984/24/33/335501
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report on the first-principles calculations of bandgap modulation in armchair MoS2 nanoribbon (AMoS(2)NR) by transverse and perpendicular electric fields respectively. In the monolayer AMoS(2)NR case, it is shown that the bandgap can be significantly reduced and be closed by transverse field, whereas the bandgap modulation is absent under perpendicular field. The critical strength of transverse field for gap closure decreases as ribbon width increases. In the multilayer AMoS(2)NR case, in contrast, it is shown that the bandgap can be effectively reduced by both transverse and perpendicular fields. Nevertheless, it seems that the two fields exhibit different modulation effects on the gap. The critical strength of perpendicular field for gap closure decreases with increasing number of layers, while the critical strength of transverse field is almost independent of it.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Indirect-direct bandgap transition and gap width tuning in bilayer MoS2 superlattices
    Jiang, J. T.
    Xiu, S. L.
    Zheng, M. M.
    Jia, T. T.
    Liu, H. Y.
    Zhang, Y.
    Chen, G.
    CHEMICAL PHYSICS LETTERS, 2014, 613 : 74 - 79
  • [2] Single-band negative differential resistance in metallic armchair MoS2 nanoribbons
    Chen, Cheng
    Wang, Xue-Feng
    Li, Yao-Sheng
    Cheng, Xue-Mei
    Yao, A-Long
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (46)
  • [3] Optical Absorption of Armchair MoS2 Nanoribbons: Enhanced Correlation Effects in the Reduced Dimension
    Kim, Jongmin
    Yun, Won Seok
    Lee, J. D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24) : 13901 - 13906
  • [4] Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure
    Peng, Li
    Yao, Kailun
    Zhu, Sicong
    Ni, Yun
    Zu, Fengxia
    Wang, Shuling
    Guo, Bin
    Tian, Yong
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
  • [5] A Voltage-Tuned Terahertz Absorber Based on MoS2/Graphene Nanoribbon Structure
    Samy, Omnia
    Belmoubarik, Mohamed
    Otsuji, Taiichi
    El Moutaouakil, Amine
    NANOMATERIALS, 2023, 13 (11)
  • [6] Moving Trajectory Analysis and Simulation in Atomic Friction for Zigzag and Armchair Lattice Orientation of MoS2
    Li, Meng
    Shi, Jialin
    Liu, Lianqing
    Xi, Ning
    Zhang, Yu
    2015 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2015, : 235 - 239
  • [7] TUNING STRUCTURAL AND ELECTRONIC PROPERTIES OF MoS2 NANOTUBES BY TRANSVERSE ELECTRIC FIELD
    Wang, Y. Z.
    Wang, B. L.
    Zhang, Q. F.
    Huang, R.
    Gao, B. L.
    Kong, F. J.
    Wang, X. Q.
    CHALCOGENIDE LETTERS, 2014, 11 (10): : 493 - 502
  • [8] Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating
    Nguyen, Chuong V.
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 116 : 79 - 87
  • [9] Electromechanical failure of MoS2 nanosheets
    Huang, Peng
    Guo, Dan
    Xie, Guoxin
    Li, Jian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (27) : 18374 - 18379
  • [10] A Symmetric Tunnel Field-Effect Transistor Based on MoS2/Black Phosphorus/MoS2 Nanolayered Heterostructures
    Jiang, Xixi
    Shi, Xinyao
    Zhang, Min
    Wang, Yarong
    Gu, Zhenghao
    Chen, Lin
    Zhu, Hao
    Zhang, Kai
    Sun, Qingqing
    Zhang, David Wei
    ACS APPLIED NANO MATERIALS, 2019, 2 (09) : 5674 - 5680