On the local filtration properties of microcrystalline cellulose during dead-end filtration

被引:13
|
作者
Mattsson, Tuve [1 ,2 ]
Sedin, Maria [2 ]
Theliander, Hans [1 ,2 ]
机构
[1] Chalmers, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
[2] Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Filtration; Porous media; Separation; Skin formation; Flow stabilisation; Mathematical modelling; COMPRESSIBLE CAKE FILTRATION; POROSITY; SUSPENSIONS; SEDIMENTATION; EXPRESSION; PARTICLES; PRESSURE; MODEL; SKIN;
D O I
10.1016/j.ces.2012.01.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Dead-end filtration is frequently used in solid-liquid separation. In order to increase understanding of the filtration of materials that form compressible cakes, local filtration properties need to be taken into consideration. The compressible nature of these filter cakes requires phenomena such as skin formation, a dense layer of high filtration resistance close to the filter medium and flow stabilisation to be considered. This study investigates local filtration properties, i.e. the hydrostatic pressure and solidosity, in the dead-end filtration of microcrystalline cellulose, using slurries of varying pH levels and concentrations and two different filter media. The local measurements indicated that a dense skin was formed. This could be avoided when the nature of the particle-particle and particle-filter medium interactions was altered, using the pH to regulate the surface charge. Local filtration properties were used to find a critical material dependent Reynolds number indicating a flow stabilisation behaviour. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [21] Radial Alignment of Carbon Nanotubes via Dead-End Filtration
    Rust, Christian
    Schill, Elias
    Garrity, Oisin
    Spari, Manuel
    Li, Han
    Bacher, Andreas
    Guttmann, Markus
    Reich, Stephanie
    Flavel, Benjamin S.
    SMALL, 2023, 19 (19)
  • [22] ANALYSIS OF FILTRATION MECHANISM OF DEAD-END ELECTROULTRAFILTRATION FOR PROTEINACEOUS SOLUTIONS
    IRITANI, E
    OHASHI, K
    MURASE, T
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1992, 25 (04) : 383 - 388
  • [23] Gel controlling dead-end membrane filtration: Theory revisited
    Banerjee, Suvrajit
    Mondal, Sourav
    De, Sirshendu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 99 : 77 - 85
  • [24] Dynamic optimization of chemical cleaning in dead-end ultra filtration
    Zondervan, Edwin
    Roffel, Brian
    JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (02) : 309 - 313
  • [25] Modeling and optimization of membrane lifetime in dead-end ultra filtration
    Zondervan, Edwin
    Roffel, Brian
    JOURNAL OF MEMBRANE SCIENCE, 2008, 322 (01) : 46 - 51
  • [26] Optimising Dead-End Cake Filtration Using Poroelasticity Theory
    Kory, J.
    Krupp, A. U.
    Please, C. P.
    Griffiths, I. M.
    MODELLING, 2021, 2 (01): : 18 - 42
  • [27] A predictive model of separations in dead-end filtration with ultrathin membranes
    Smith, Karl J. P.
    May, Marina
    Baltus, Ruth
    McGrath, James L.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 189 : 40 - 47
  • [28] Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration
    Wang, Qian
    Tang, Xiaobin
    Liang, Heng
    Cheng, Wenjun
    Li, Guibai
    Zhang, Qingjun
    Chen, Jie
    Chen, Kang
    Wang, Jinlong
    WATER, 2022, 14 (02)
  • [29] Dead-end filtration properties of microporous polypropylene membranes with different gas permeation rates
    Wang, Jianli
    Ruan, Wenxiang
    Ji, Jianbin
    Yao, Kejian
    DESALINATION, 2006, 192 (1-3) : 68 - 73
  • [30] Effects of surface structure on the filtration properties of microcrystalline cellulose
    Wetterling, Jonas
    Mattsson, Tuve
    Theliander, Hans
    SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 136 : 1 - 9