Cut-elimination for Weak Grzegorczyk Logic Go

被引:2
作者
Gore, Rajeev [1 ]
Ramanayake, Revantha [2 ]
机构
[1] Australian Natl Univ, Res Sch Comp Sci, Log & Computat Grp, Canberra, ACT 0200, Australia
[2] Ecole Polytech, CNRS LIX, F-91128 Palaiseau, France
基金
奥地利科学基金会;
关键词
Proof theory; Syntactic cut-elimination; Go; Weak Grzegorczyk logic; MODAL LOGIC; PROVABILITY; PROOF;
D O I
10.1007/s11225-012-9432-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a syntactic proof of cut-elimination for weak Grzegorczyk logic Go. The logic has a syntactically similar axiomatisation to Godel-Lob logic GL (provability logic) and Grzegorczyk's logic Grz. Semantically, GL can be viewed as the irreflexive counterpart of Go, and Grz can be viewed as the reflexive counterpart of Go. Although proofs of syntactic cut-elimination for GL and Grz have appeared in the literature, this is the first proof of syntactic cut-elimination for Go. The proof is technically interesting, requiring a deeper analysis of the derivation structures than the proofs for GL and Grz. New transformations generalising the transformations for GL and Grz are developed here.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 16 条
[1]  
Amerbauer Martin., 1996, Studia Logica: An International Journal for Symbolic Logic, V57, P359
[2]  
[Anonymous], J NANZAN ACAD SOC MA
[3]  
[Anonymous], 1999, Handbook of Tableau Methods
[4]  
BELNAP ND, 1982, J PHILOS LOGIC, V11, P375
[5]   ON THE PROOF THEORY OF THE MODAL LOGIC GRZ [J].
BORGA, M ;
GENTILINI, P .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1986, 32 (02) :145-148
[6]  
Borga M., 1983, STUDIA LOGICA, V42, P453
[7]  
Esakia L., 2006, Journal of Applied Non-Classical Logics, V16, P349, DOI DOI 10.3166/JANCL.16.349-366
[8]  
Gabelaia D., 2005, THESIS KING COLL LON
[9]  
Gentzen G., 1969, STUDIES LOGIC FDN MA, V55
[10]  
Litak T., 2007, B SECTION LOGIC, V36, P195