Recursive estimation of nonparametric regression with functional covariate

被引:24
作者
Amiri, Aboubacar [1 ]
Crambes, Christophe [2 ]
Thiam, Baba [1 ]
机构
[1] Univ Lille 3, Univ Lille Nord France, Lab EQUIPPE EA 4018, Villeneuve Dascq, France
[2] Univ Montpellier 2, Inst Math & Modelisat Montpellier, F-34090 Montpellier, France
关键词
Functional data; Recursive kernel estimators; Regression function; Quadratic error; Almost sure convergence; Asymptotic normality; TOOLS;
D O I
10.1016/j.csda.2013.07.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main purpose is to estimate the regression function of a real random variable with functional explanatory variable by using a recursive nonparametric kernel approach. The mean square error and the almost sure convergence of a family of recursive kernel estimates of the regression function are derived. These results are established with rates and precise evaluation of the constant terms. Also, a central limit theorem for this class of estimators is established. The method is evaluated on simulations and real dataset studies. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 172
页数:19
相关论文
共 23 条
[1]  
AHMAD IA, 1976, B MATH STAT, V17, P63
[2]   Recursive regression estimators with application to nonparametric prediction [J].
Amiri, Aboubacar .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) :169-186
[3]   Simultaneous non-parametric regressions of unbalanced longitudinal data [J].
Besse, PC ;
Cardot, H ;
Ferraty, F .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (03) :255-270
[4]   Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data [J].
Bosq, D ;
Cheze-Payaud, N .
STATISTICS, 1999, 32 (03) :229-247
[5]  
Cardot H, 2003, STAT SINICA, V13, P571
[6]  
Collomb G., 1976, Ph.D. dissertation
[7]   SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION [J].
Crambes, Christophe ;
Kneip, Alois ;
Sarda, Pascal .
ANNALS OF STATISTICS, 2009, 37 (01) :35-72
[8]   DISTRIBUTION-FREE CONSISTENCY RESULTS IN NONPARAMETRIC DISCRIMINATION AND REGRESSION FUNCTION ESTIMATION [J].
DEVROYE, LP ;
WAGNER, TJ .
ANNALS OF STATISTICS, 1980, 8 (02) :231-239
[9]   UNIFORM BOUND FOR DEVIATION OF EMPIRICAL DISTRIBUTION FUNCTIONS [J].
DEVROYE, LP .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (04) :594-597
[10]  
Ferraty F., 2010, HDB FUNCTIONAL DATA