A posteriori error estimates for elliptic variational inequalities

被引:49
作者
Kornhuber, R
机构
[1] Weierstraß-Inst. Angew. A., D-10117 Berlin
关键词
free boundary problems; adaptive finite element methods; a posteriori error estimates;
D O I
10.1016/0898-1221(96)00030-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive hierarchical a posteriori error estimates for elliptic variational inequalities. The evaluation amounts to the solution of corresponding scalar local subproblems. We derive some upper bounds for the effectivity rates and the numerical properties are illustrated by typical examples.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1983, APPROXIMATION NONLIN
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[4]  
BANK RE, 1990, PLTMG SOFTWARE PACKA
[5]  
BECK R, 1995, 954 TR KONR ZUS ZENT
[6]   ADAPTIVE MULTILEVEL METHODS IN 3 SPACE DIMENSIONS [J].
BORNEMANN, F ;
ERDMANN, B ;
KORNHUBER, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (18) :3187-3203
[7]  
BORNEMANN FA, IN PRESS SIAM J NUME
[8]  
BORNEMANN FA, UNPUB NUMER MATH
[9]  
BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345
[10]   NUMERICAL-ANALYSIS OF 2-PHASE STEFAN PROBLEM BY METHOD OF FINITE-ELEMENTS [J].
CIAVALDINI, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) :464-487