Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification

被引:6
|
作者
Du, Wei [1 ]
Phlypo, Ronald [1 ]
Adali, Tulay [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21228 USA
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2019年 / 91卷 / 05期
关键词
Co-training; Semi-supervised learning; Feature extraction; Feature fusion; Image classification; LTM tire images; COMPONENT ANALYSIS; FRAMEWORK; CRITERIA;
D O I
10.1007/s11265-018-1355-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Labeling of data is often difficult, expensive, and time consuming since efforts of experienced human annotators are required, and often we have large number of samples and noisy data. Co-training is a practical and powerful semi-supervised learning method as it yields high classification accuracy with a training data set containing only a small set of labeled data. For successful co-training performance, two important conditions need to be satisfied for the features: diversity and sufficiency. In this paper, we propose a novel mutual information based approach inspired by the idea of dependent component analysis to achieve feature splits that are maximally independent between-subsets (diverse) or within-subsets (sufficient). In addition, we demonstrate the application of the method to a real world problem, classification of laser tread mapping tire data. We introduce several features that are designed to highlight physical characteristics of the tire data, as well as local or global descriptors, such as histograms, gradients, or representations in other domains. Results from both simulations and tire image classification confirm that co-training with the proposed feature set and feature splits consistently yields higher accuracy than supervised classification, when using only a small set of labeled training data is available. The proposed method presents a very promising complement to time consuming and subjective expert labeling of data, reducing expert efforts to a minimum. Further results show that by using a probabilistic multi-layer perceptron classifier as the base learner in co-training, our method leads to very meaningful continuous measures for the progression of irregular wear on tire surface.
引用
收藏
页码:521 / 537
页数:17
相关论文
共 50 条
  • [1] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Wei Du
    Ronald Phlypo
    Tülay Adalı
    Journal of Signal Processing Systems, 2019, 91 : 521 - 537
  • [2] Semi-supervised Feature Selection for Gender Classification
    Wu, Jing
    Smith, William A. P.
    Hancock, Edwin R.
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 23 - 33
  • [3] Semi-supervised local feature selection for data classification
    Zechao Li
    Jinhui Tang
    Science China Information Sciences, 2021, 64
  • [4] Semi-supervised local feature selection for data classification
    Li, Zechao
    Tang, Jinhui
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (09)
  • [5] Semi-supervised local feature selection for data classification
    Zechao LI
    Jinhui TANG
    ScienceChina(InformationSciences), 2021, 64 (09) : 127 - 138
  • [6] Semi-Supervised Feature Selection with Adaptive Graph Learning
    Jiang B.-B.
    He W.-D.
    Wu X.-Y.
    Xiang J.-H.
    Hong L.-B.
    Sheng W.-G.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (07): : 1643 - 1652
  • [7] Semi-Supervised Feature Selection with Adaptive Discriminant Analysis
    Zhong, Weichan
    Chen, Xiaojun
    Yuan, Guowen
    Li, Yiqin
    Nie, Feiping
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10083 - 10084
  • [8] Adaptive discriminant analysis for semi-supervised feature selection
    Zhong, Weichan
    Chen, Xiaojun
    Nie, Feiping
    Huang, Joshua Zhexue
    INFORMATION SCIENCES, 2021, 566 : 178 - 194
  • [9] Semi-supervised multi-view feature selection with adaptive similarity fusion and learning
    Jiang, Bingbing
    Liu, Jun
    Wang, Zidong
    Zhang, Chenglong
    Yang, Jie
    Wang, Yadi
    Sheng, Weiguo
    Ding, Weiping
    PATTERN RECOGNITION, 2025, 159
  • [10] BASSUM: A Bayesian semi-supervised method for classification feature selection
    Cai, Ruichu
    Zhang, Zhenjie
    Hao, Zhifeng
    PATTERN RECOGNITION, 2011, 44 (04) : 811 - 820