ON THE GEOMETRY OF THE TANGENT BUNDLE WITH VERTICAL RESCALED METRIC

被引:5
作者
Dida, H. M. [1 ]
Hathout, F. [1 ]
Azzouz, A. [1 ]
机构
[1] Univ Saida, Fac Sci, Dept Math, Saida 20000, Algeria
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2019年 / 68卷 / 01期
关键词
Tangent bundle; vertical rescaled metric; Einstein structure; curvature; NATURAL METRICS;
D O I
10.31801/cfsuasmas.443735
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, we introduce a new class of natural metrics denoted by G(f) and called the vertical rescaled metric on the tangent bundle TM. We calculate its Levi-Civita connection and Riemannian curvature tensor. We study the geometry of (TM, G(f)) and several important results are obtained on curvature, Einstein structure, scalar and sectional curvatures.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 23 条
[1]  
Abbassi M.T.K., 2004, Comment. Math. Univ. Carol, V45, P591
[2]  
Abbassi MTK, 2005, ARCH MATH-BRNO, V41, P71
[3]   On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds [J].
Abbassi, MTK ;
Sarih, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) :19-47
[4]  
[Anonymous], 1962, J REINE ANGEW MATH
[5]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[6]  
Dida H.M., 2009, Int. J. Math. Anal., V3, P443
[7]  
Garcia-Rio D, 2010, MATH ITS APPL, V8
[8]  
Gezer A, 2013, INT ELECTRON J GEOM, V6, P19
[9]  
Gudmundsson S., 2002, Tokyo J. Math., V25, P75, DOI 10.3836/tjm/1244208938
[10]  
GUDMUNDSSON S, 2002, EXPOS MATH, V0020, P00001, DOI [10.1016/S0723-0869(02)80027-5, DOI 10.1016/S0723-0869(02)80027-5]