Time optimal swing-up of the planar pendulum

被引:36
作者
Mason, Paolo [1 ,2 ]
Broucke, Mireille [3 ]
Piccoli, Benedetto [2 ]
机构
[1] Univ Salerno, DIIMA, Salerno, Italy
[2] Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
[3] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
inverted pendulum; stabilization; time optimal control;
D O I
10.1109/TAC.2008.929391
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents qualitative results on the global structure of the time optimal trajectories of the planar pendulum on a cart. This mechanical system is a benchmark to test nonlinear control methods and various papers addressed the problem of computing time optimal open-loop controls. Relying on the theory of optimal synthesis, we provide a discontinuous feedback giving optimal solutions for any initial data. The approach is that of geometric control theory.
引用
收藏
页码:1876 / 1886
页数:11
相关论文
共 25 条
[1]  
Agrachev A.A., 2004, ENCY MATH SCI, V87
[2]   Discrete abstractions of hybrid systems [J].
Alur, R ;
Henzinger, TA ;
Lafferriere, G ;
Pappas, GJ .
PROCEEDINGS OF THE IEEE, 2000, 88 (07) :971-984
[3]   Almost global stabilization of the inverted pendulum via continuous state feedback [J].
Angeli, D .
AUTOMATICA, 2001, 37 (07) :1103-1108
[4]   Swinging up a pendulum by energy control [J].
Åström, KJ ;
Furuta, K .
AUTOMATICA, 2000, 36 (02) :287-295
[5]  
BAITMANN M, 1978, DIFF EQUAT, V14, P407
[6]  
BAITMANN MM, 1978, DIFF EQUAT, V14, P1093
[7]   On the combinatorial and algebraic complexity of quantifier elimination [J].
Basu, S ;
Pollack, R ;
Roy, MF .
JOURNAL OF THE ACM, 1996, 43 (06) :1002-1045
[8]  
BOLTYANSKII V. G., 1966, SIAM J. Control, V4, P326, DOI [10.1137/0304027, DOI 10.1137/0304027]
[9]  
Boscain U, 2005, DISCRETE CONT DYN-B, V5, P957
[10]  
Boscain U., 2004, MATH APPL, V43