Multiple Hamilton cycles in bipartite cubic graphs: An algebraic method

被引:0
作者
Alahmadi, Adel N. [1 ]
Glynn, David G. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Math, Jeddah 21859, Saudi Arabia
[2] Flinders Univ S Australia, CSEM, POB 2100, Adelaide, SA 5001, Australia
关键词
Graph; Cubic; Hamilton cycle; Bipartite; Determinant; Finite field; GF(2);
D O I
10.1016/j.ffa.2016.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many important graphs are bipartite and cubic (i.e. bipartite and trivalent, or "bicubic"). We explain concisely how the Hamilton cycles of this type of graph are characterized by a single determinantal condition over GF(2). Thus algebra may be used to derive results such as those of Bosak, Kotzig, and Tutte that were originally proved differently. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 9 条
[1]  
Alahmadi A., PREPRINT
[2]  
[Anonymous], 2013, Modern graph theory
[3]   ZEROES OF POLYNOMIALS OVER FINITE FIELDS [J].
AX, J .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) :255-&
[4]  
Bosak J., 1967, THEORY GRAPHS, P35
[5]   HAMILTONIAN CYCLES IN CUBIC 3-CONNECTED BIPARTITE PLANAR GRAPHS [J].
HOLTON, DA ;
MANVEL, B ;
MCKAY, BD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (03) :279-297
[6]  
Kotzig A., 1958, CAS PEST MATH, V87, P348
[7]  
LIDL R, 1984, ENCY MATH APPL, V20
[8]  
Tutte W.T., 1946, J. Lond. Math. Soc., V21, P98, DOI 10.1112/jlms/s1-21.2.98
[9]  
Warning E., 1935, Abh. Math. Semin. Hamb., V11, P76, DOI [10.1007/BF02940715, DOI 10.1007/BF02940715]