Mud flow levitation on Mars: Insights from laboratory simulations

被引:10
作者
Broz, P. [1 ]
Kryza, O. [1 ]
Conway, S. J. [2 ]
Mueller, N. T. [3 ]
Hauber, E. [3 ]
Mazzini, A. [4 ]
Raack, J. [5 ]
Balme, M. R. [6 ]
Sylvest, M. E. [6 ]
Patel, M. R. [6 ,7 ]
机构
[1] Czech Acad Sci, Inst Geophys, Bocni 2-1401, Prague 14131, Czech Republic
[2] Univ Nantes, CNRS, UMR 6112, Lab Planetol & Geodynam, Nantes, France
[3] DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
[4] Univ Oslo, Ctr Earth Evolut & Dynam CEED, Oslo, Norway
[5] Westfalische Wilhelms Univ, Inst Planetol, Munster, Germany
[6] Open Univ, STEM, Sch Phys Sci, Milton Keynes, Bucks, England
[7] STFC Rutherford Appleton Lab, Space Sci & Technol Dept, Oxford, England
基金
欧洲研究理事会;
关键词
Mars; sedimentary volcanism; analogue experiments; low pressure chamber; mud flow; levitation; SUBSURFACE SEDIMENT MOBILIZATION; VALLES MARINERIS; CHRYSE PLANITIA; GIANT POLYGONS; SURFACE; VOLCANISM; MOUNDS; WATER;
D O I
10.1016/j.epsl.2020.116406
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sediment mobilisation occurring at depth and ultimately manifesting at the surface, is a process which may have operated on Mars. However, the propagation behaviour of this mixture of water and sediments (hereafter simply referred to as mud) over the martian surface, remains uncertain. Although most of the martian surface is below freezing today, locally warmer surface temperatures do occur, and our current knowledge suggests that similar conditions prevailed in the recent past. Here, we present the results of experiments performed inside a low pressure chamber to investigate mud propagation over a warm (similar to 295 K) unconsolidated sand surface under martian atmospheric pressure conditions (similar to 7 mbar). Results show that the mud boils while flowing over the warm surface. The gas released during this process can displace the underlying sand particles and hence erode part of the substrate. This "entrenched" flow can act as a platform for further mud propagation over the surface. The escaping gas causes intermittent levitation of the mud resulting in enhanced flow rates. The mud flow morphologies produced by these phenomena differ from those produced when mud flows over a frozen martian surface as well as from their terrestrial counterparts. The intense boiling removes the latent heat both from the mud and the subsurface, meaning that the mud flow would eventually start to freeze and hence changing again the way it propagates. The diverse morphology expressed by our experimental mudflows implies that caution should be exercised when interpreting flow features on the surface of Mars and other celestial bodies. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 49 条
[31]   Methane Seepage on Mars: Where to Look and Why [J].
Oehler, Dorothy Z. ;
Etiope, Giuseppe .
ASTROBIOLOGY, 2017, 17 (12) :1233-1264
[32]   Giant Polygons and Mounds in the Lowlands of Mars: Signatures of an Ancient Ocean? [J].
Oehler, Dorothy Z. ;
Allen, Carlton C. .
ASTROBIOLOGY, 2012, 12 (06) :601-615
[33]   Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars [J].
Okubo, Chris H. .
ICARUS, 2016, 269 :23-37
[34]   How large are present-day heat flux variations across the surface of Mars? [J].
Plesa, A. -C. ;
Grott, M. ;
Tosi, N. ;
Breuer, D. ;
Spohn, T. ;
Wieczorek, M. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2016, 121 (12) :2386-2403
[35]   Mud volcanoes in the geologic record of Mars: The case of Firsoff crater [J].
Pondrelli, M. ;
Rossi, A. P. ;
Ori, G. G. ;
van Gasselt, S. ;
Praeg, D. ;
Ceramicola, S. .
EARTH AND PLANETARY SCIENCE LETTERS, 2011, 304 (3-4) :511-519
[36]   Thermal conductivity measurements of particulate materials .2. Results [J].
Presley, MA ;
Christensen, PR .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1997, 102 (E3) :6551-6566
[37]   Apparent thermal inertia and the surface heterogeneity of Mars [J].
Putzig, Nathaniel E. ;
Mellon, Michael T. .
ICARUS, 2007, 191 (01) :68-94
[38]   Water induced sediment levitation enhances downslope transport on Mars [J].
Raack, Jan ;
Conway, Susan J. ;
Herny, Clemence ;
Balme, Matthew R. ;
Carpy, Sabrina ;
Patel, Manish R. .
NATURE COMMUNICATIONS, 2017, 8
[39]   Fluidized-sediment pipes in Gale crater, Mars, and possible Earth analogs [J].
Rubin, David M. ;
Fairen, A. G. ;
Martinez-Frias, J. ;
Frydenvang, J. ;
Gasnault, O. ;
Gelfenbaum, G. ;
Goetz, W. ;
Grotzinger, J. P. ;
Le Mouelic, S. ;
Mangold, N. ;
Newsom, H. ;
Oehler, D. Z. ;
Rapin, W. ;
Schieber, J. ;
Wiens, R. C. .
GEOLOGY, 2017, 45 (01) :7-10
[40]   Slurry extrusion on Ceres from a convective mud-bearing mantle [J].
Ruesch, Ottaviano ;
Genova, Antonio ;
Neumann, Wladimir ;
Quick, Lynnae C. ;
Castillo-Rogez, Julie C. ;
Raymond, Carol A. ;
Russell, Christopher T. ;
Zuber, Maria T. .
NATURE GEOSCIENCE, 2019, 12 (07) :505-+