A NOTE ON NON-DOMINATING SET PARTITIONS IN GRAPHS

被引:3
作者
Desormeaux, Wyatt J. [1 ]
Haynes, Teresa W. [1 ,2 ]
Henning, Michael A. [1 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] East Tennessee State Univ, Dept Math & Stat, Johnson City, TN 37614 USA
基金
新加坡国家研究基金会;
关键词
domination; total domination; non-dominating partition; non-total dominating partition;
D O I
10.7151/dmgt.1895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a graph G is a dominating set if every vertex not in S is adjacent to a vertex of S and is a total dominating set if every vertex of G is adjacent to a vertex of S. The cardinality of a minimum dominating (total dominating) set of G is called the domination (total domination) number. A set that does not dominate (totally dominate) G is called a non dominating (non-total dominating) set of G. A partition of the vertices of G into non-dominating (non-total dominating) sets is a non-dominating (non total dominating) set partition. We show that the minimum number of sets in a non-dominating set partition of a graph G equals the total domination number of its complement (G) over bar and the minimum number of sets in a non-total dominating set partition of G equals the domination number of (G) over bar. This perspective yields new upper bounds on the domination and total domination numbers. We motivate the study of these concepts with a social network application.
引用
收藏
页码:1043 / 1050
页数:8
相关论文
共 11 条
[1]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[2]  
Haynes T. W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[3]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[4]  
Heggernes P., 1998, Nordic Journal of Computing, V5, P128
[5]  
Henning M. A., 2013, Total Domination in Graphs
[6]  
Henning MA, 2001, UTILITAS MATHEMATICA, V60, P99
[7]   Remarks about disjoint dominating sets [J].
Henning, Michael A. ;
Loewenstein, Christian ;
Rautenbach, Dieter .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6451-6458
[8]   Pairs of Disjoint Dominating Sets in Connected Cubic Graphs [J].
Loewenstein, Christian ;
Rautenbach, Dieter .
GRAPHS AND COMBINATORICS, 2012, 28 (03) :407-421
[9]  
Uriel F., 2002, SIAM J COMPUT, V32, P172, DOI [10.1137/S0097539700380754, DOI 10.1137/S0097539700380754]
[10]  
Zelinka B., 1989, Mathematica Slovaca, V39, P7