Adaptive Sparse Bayesian Regression with Variational Inference for Parameter Estimation

被引:0
作者
Koda, Satoru [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016 | 2016年 / 10029卷
关键词
D O I
10.1007/978-3-319-49055-7_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A relevance vector machine (RVM) is a sparse Bayesian modeling tool for regression analysis. Since it can estimate complex relationships among variables and provide sparse models, it has been known as an efficient tool. On the other hand, the accuracy of RVM models strongly depends on the selection of their kernel parameters. This article presents a kernel parameter estimation method based on variational inference theories. This approach is quite adaptive, which enables RVM models to capture nonlinearity and local structure automatically. We applied the proposed method to artificial and real datasets. The results showed that the proposed method can achieve more accurate regression than other RVMs.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [41] Fast Variational Bayesian Inference for Temporally Correlated Sparse Signal Recovery
    Cao, Zheng
    Dai, Jisheng
    Xu, Weichao
    Chang, Chunqi
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 214 - 218
  • [42] Variational Bayesian Inference for Sparse Representation of Migrating Targets in Wideband radar
    Bidon, Stephanie
    Tamalet, Anais
    Tourneret, Jean-Yves
    [J]. 2013 IEEE RADAR CONFERENCE (RADAR), 2013,
  • [43] Sparse linear models: Variational approximate inference and Bayesian experimental design
    Seeger, Matthias W.
    [J]. INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2009 (IW-SMI 2009), 2009, 197
  • [44] Visual Tracking with Sparse Prototypes: An Approach Based on Variational Bayesian Inference
    Hu, Lei
    Wang, Jun
    Wu, Zemin
    Zhang, Lei
    [J]. 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 560 - 565
  • [45] Bayesian estimation of the shrinkage parameter in ridge regression
    Firinguetti-Limone, Luis
    Pereira-Barahona, Manuel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3314 - 3327
  • [46] Adaptive monocular multiple object tracking with variational Bayesian inference
    Tian, Shixia
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2025,
  • [47] Implicitly adaptive optimal proposal in variational inference for Bayesian learning
    Bakhouya, Mostafa
    Ramchoun, Hassan
    Hadda, Mohammed
    Masrour, Tawfik
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [48] Sparse Bayesian blind image deconvolution with parameter estimation
    Amizic, Bruno
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2012,
  • [49] Variational inference based distributed noise adaptive Bayesian filter
    Lin, Haoshen
    Hu, Chen
    [J]. SIGNAL PROCESSING, 2021, 178
  • [50] SPARSE BAYESIAN BLIND IMAGE DECONVOLUTION WITH PARAMETER ESTIMATION
    Amizic, Bruno
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 626 - 630