Adaptive Sparse Bayesian Regression with Variational Inference for Parameter Estimation

被引:0
作者
Koda, Satoru [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016 | 2016年 / 10029卷
关键词
D O I
10.1007/978-3-319-49055-7_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A relevance vector machine (RVM) is a sparse Bayesian modeling tool for regression analysis. Since it can estimate complex relationships among variables and provide sparse models, it has been known as an efficient tool. On the other hand, the accuracy of RVM models strongly depends on the selection of their kernel parameters. This article presents a kernel parameter estimation method based on variational inference theories. This approach is quite adaptive, which enables RVM models to capture nonlinearity and local structure automatically. We applied the proposed method to artificial and real datasets. The results showed that the proposed method can achieve more accurate regression than other RVMs.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [31] A Novel Semi-Supervised Sparse Bayesian Regression Based on Variational Inference for Industrial Datasets with Incomplete Outputs
    Zhao, Jun
    Chen, Long
    Pedrycz, Witold
    Wang, Wei
    IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50 (11): : 4773 - 4786
  • [32] A Novel Semi-Supervised Sparse Bayesian Regression Based on Variational Inference for Industrial Datasets With Incomplete Outputs
    Zhao, Jun
    Chen, Long
    Pedrycz, Witold
    Wang, Wei
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4773 - 4786
  • [33] A Variational Bayes Framework for Sparse Adaptive Estimation
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (18) : 4723 - 4736
  • [34] Bayesian estimation of Dirichlet mixture model with variational inference
    Ma, Zhanyu
    Rana, Pravin Kumar
    Taghia, Jalil
    Flierl, Markus
    Leijon, Arne
    PATTERN RECOGNITION, 2014, 47 (09) : 3143 - 3157
  • [35] Bayesian Estimation of Beta Mixture Models with Variational Inference
    Ma, Zhanyu
    Leijon, Arne
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (11) : 2160 - 2173
  • [36] Variational Bayesian inference for interval regression with an asymmetric Laplace distribution
    Zhang, J.
    Liu, M.
    Dong, M.
    NEUROCOMPUTING, 2019, 323 : 214 - 230
  • [37] A variational inference for the Levy adaptive regression with multiple kernels
    Lee, Youngseon
    Jo, Seongil
    Lee, Jaeyong
    COMPUTATIONAL STATISTICS, 2022, 37 (05) : 2493 - 2515
  • [38] Bayesian compositional regression with microbiome features via variational inference
    Darren A. V. Scott
    Ernest Benavente
    Julian Libiseller-Egger
    Dmitry Fedorov
    Jody Phelan
    Elena Ilina
    Polina Tikhonova
    Alexander Kudryavstev
    Julia Galeeva
    Taane Clark
    Alex Lewin
    BMC Bioinformatics, 24
  • [39] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [40] Bayesian compositional regression with microbiome features via variational inference
    Scott, Darren A. V.
    Benavente, Ernest
    Libiseller-Egger, Julian
    Fedorov, Dmitry
    Phelan, Jody
    Ilina, Elena
    Tikhonova, Polina
    Kudryavstev, Alexander
    Galeeva, Julia
    Clark, Taane
    Lewin, Alex
    BMC BIOINFORMATICS, 2023, 24 (01)