Growth and characterization of InxGa1-xN alloys by metalorganic chemical vapor deposition for solar cell applications

被引:7
作者
Huang, Yong [1 ,2 ]
Melton, Andrew [2 ]
Jampana, Balakrishnam [3 ]
Jamil, Muhammad [2 ]
Ryou, Jae-Hyun [1 ,2 ]
Dupuis, Russell D. [1 ,2 ,4 ]
Ferguson, Ian T. [2 ,5 ]
机构
[1] Georgia Inst Technol, Ctr Compound Semicond, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[5] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
来源
JOURNAL OF PHOTONICS FOR ENERGY | 2012年 / 2卷
关键词
InGaN; metalorganic chemical vapor deposition; solar cells; material quality; phase separation; INGAN;
D O I
10.1117/1.JPE.2.028501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the structural, morphological, and optical qualities of thick InxGa1-xN heteroepitaxial layers grown by metalorganic chemical vapor deposition with various growth conditions for applications in wide-bandgap solar cells. The indium incorporation depending on the growth temperature and indium precursor flow rate and the crystalline and optical qualities of InGaN layers depending on indium mole fraction were investigated. The InGaN layers with high structural and optical qualities were obtained for indium mole fractions, x(In) < 0.18, whereas significant degradation of material qualities was observed for x(In) > 0.18, which is associated with the change of growth mode induced by reduced growth temperature. Stokes shift and microscopic and macroscopic phase separations were also studied. Two types of additional phases besides InGaN matrix, i.e., indium-rich InGaN microstructures and macroscopic InGaN domains, were demonstrated to be suppressed by controlling surface adatom mobility and growth rates. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JPE.2.028501]
引用
收藏
页数:10
相关论文
共 22 条
  • [1] Fabrication and characterization of InGaN p-i-n homojunction solar cell
    Cai, Xiao-mei
    Zeng, Sheng-wei
    Zhang, Bao-ping
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (17)
  • [2] Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces
    Chen, HJ
    Feenstra, RM
    Northrup, JE
    Zywietz, T
    Neugebauer, J
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (09) : 1902 - 1905
  • [3] Surface structures and growth kinetics of InGaN(0001) grown by molecular beam epitaxy
    Chen, HJ
    Feenstra, RM
    Northrup, JE
    Zywietz, T
    Neugebauer, J
    Greve, DW
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (04): : 2284 - 2289
  • [4] Spontaneous emission of localized excitons in InGaN single and multiquantum well structures
    Chichibu, S
    Azuhata, T
    Sota, T
    Nakamura, S
    [J]. APPLIED PHYSICS LETTERS, 1996, 69 (27) : 4188 - 4190
  • [5] Theoretical possibilities of InxGa1-xN tandem PV structures
    Hamzaoui, H
    Bouazzi, AS
    Rezig, B
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) : 595 - 603
  • [6] Compositional instability in strained InGaN epitaxial layers induced by kinetic effects
    Huang, Yong
    Melton, Andrew
    Jampana, Balakrishnam
    Jamil, Muhammad
    Ryou, Jae-Hyun
    Dupuis, Russell D.
    Ferguson, Ian T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
  • [7] Design and characterization of GaN/InGaN solar cells
    Jani, Omkar
    Ferguson, Ian
    Honsberg, Christiana
    Kurtz, Sarah
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (13)
  • [8] Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films
    Kim, IH
    Park, HS
    Park, YJ
    Kim, T
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (12) : 1634 - 1636
  • [9] Large band gap bowing of InxGa1-xN alloys
    McCluskey, MD
    Van de Walle, CG
    Master, CP
    Romano, LT
    Johnson, NM
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (21) : 2725 - 2726
  • [10] InGaN-based blue light-emitting diodes and laser diodes
    Nakamura, S
    [J]. JOURNAL OF CRYSTAL GROWTH, 1999, 201 : 290 - 295