Islands at infinity on manifolds of asymptotically nonnegative curvature

被引:0
作者
Mendonca, Sergio [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Fluminense, Dept Anal, BR-24020140 Niteroi, RJ, Brazil
[2] Univ Fed Fluminense, Dept Geometria, BR-24020140 Niteroi, RJ, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2008年 / 39卷 / 04期
关键词
nonnegative curvature; convexity; isometry group;
D O I
10.1007/s00574-008-0007-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an invariant which measures the R-eccentricity of a point in a complete Riemannian manifold M and show that it goes to zero when the point goes to infinity, if M has asymptotically nonnegative curvature. As a consequence we show that the isometry group is compact if M has asymptotically nonnegative curvature and a point with positive sectional curvature.
引用
收藏
页码:597 / 616
页数:20
相关论文
共 15 条
[1]  
ABRESCH U, 1985, ANN SCI ECOLE NORM S, V18, P651
[2]  
ABRESCH U, 1987, ANN SCI ECOLE NORM S, V20, P475
[3]   A THEOREM OF MYERS [J].
AMBROSE, W .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (03) :345-348
[4]  
CHEEGER J, 1991, LECT NOTES MATH, V1504, P1
[5]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[6]  
Greene R.E., 1979, LECT NOTES MATH, V699
[7]  
GROVE K, 1987, LECT NOTES MATH, V1263, P171
[8]  
Huber A., 1957, COMMENT MATH HELV, V32, P13, DOI [DOI 10.1007/BF02564570.571, 10.1007/BF02564570]
[9]  
KASUE A, 1988, ANN SCI ECOLE NORM S, V21, P593
[10]   Maximal ergodic theorems and applications to Riemannian geometry [J].
Mendonça, S ;
Zhou, DT .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) :319-335