Identifying Characteristic Genes Based on Robust Principal Component Analysis

被引:0
|
作者
Zheng, Chun-Hou [1 ]
Liu, Jin-Xing [2 ,3 ]
Mi, Jian-Xun [2 ]
Xu, Yong [2 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230039, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, BioComp Res Ctr, Shenzhen, Peoples R China
[3] Qufu Normal Univ, Coll Informat & Commun Technol, Rizhao, Peoples R China
来源
EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS | 2012年 / 304卷
关键词
robust PCA; gene identification; gene expression data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, based on robust PCA, a novel method of characteristic genes identification is proposed. In our method, the differentially expressed genes and non-differentially expressed genes are treated as perturbation signals S-0 and low-rank matrix A(0), respectively, which can be recovered from the gene expression data using robust PCA. The scheme to identify the characteristic genes is as following. Firstly, the matrix S-0 of perturbation signals is discovered from gene expression data matrix D by using robust PCA. Secondly, the characteristic genes are selected according to matrix S-0. Finally, the characteristic genes are checked by the tool of Gene Ontology. The experimental results show that our method is efficient and effective.
引用
收藏
页码:174 / +
页数:2
相关论文
共 50 条
  • [21] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [22] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [23] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [24] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [25] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [26] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [27] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [28] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [29] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [30] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613