Solitons and Gibbs Measures for Nonlinear Schrodinger Equations

被引:2
|
作者
Kirkpatrick, K. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
NLS equation; statistical mechanics; invariant Gibbs measures; exact solvability; DATA CAUCHY-THEORY; CUBIC SCHRODINGER; INVARIANT-MEASURES; STATISTICAL-MECHANICS; ILL-POSEDNESS; DERIVATION; REGULARITY; EXISTENCE; DYNAMICS; ENERGY;
D O I
10.1051/mmnp/20127209
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review some recent results concerning Gibbs measures for nonlinear Schrodinger equations (NLS), with implications for the theory of the NLS, including stability and typicality of solitary wave structures. In particular, we discuss the Gibbs measures of the discrete NLS in three dimensions, where there is a striking phase transition to soliton-like behavior.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [11] BOUND SOLITONS IN COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    MALOMED, BA
    PHYSICAL REVIEW A, 1992, 45 (12): : R8321 - R8323
  • [12] Unstable gap solitons in inhomogeneous nonlinear Schrodinger equations
    Marangell, R.
    Susanto, H.
    Jones, C. K. R. T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (04) : 1191 - 1205
  • [13] Discrete solitons for periodic discrete nonlinear Schrodinger equations
    Mai, Ali
    Zhou, Zhan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 34 - 41
  • [14] Stability of fundamental solitons of coupled nonlinear Schrodinger equations
    Chen, YJ
    Atai, J
    OPTICS COMMUNICATIONS, 1998, 150 (1-6) : 381 - 389
  • [15] Gap solitons in periodic discrete nonlinear Schrodinger equations
    Pankov, A
    NONLINEARITY, 2006, 19 (01) : 27 - 40
  • [16] Instability of degenerate solitons for nonlinear Schrodinger equations with derivative
    Fukaya, Noriyoshi
    Hayashi, Masayuki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [17] Solitons in coupled nonlinear Schrodinger equations with variable coefficients
    Han, Lijia
    Huang, Yehui
    Liu, Hui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 3063 - 3073
  • [18] Invariant Measures for Stochastic Nonlinear Schrodinger Equations
    Hong, Jialin
    Wang, Xu
    INVARIANT MEASURES FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATIONS: NUMERICAL APPROXIMATIONS AND SYMPLECTIC STRUCTURES, 2019, 2251 : 63 - 79
  • [19] Gibbs Measures of Nonlinear Schrodinger Equations as Limits of Many-Body Quantum States in Dimensions d ≤ 3
    Frohlich, Jurg
    Knowles, Antti
    Schlein, Benjamin
    Sohinger, Vedran
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 883 - 980
  • [20] Bound states of envelope solitons in coupled nonlinear Schrodinger equations
    Mahmood, MF
    Zachary, WW
    Gill, TL
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1997, 6 (01): : 49 - 53